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Abstract— The traditional method of estimating an Event 
Related Potential (ERP) is to take the average of signal epochs 
time locked to a set of similar experimental events. This 
averaging method is useful as long as the experimental 
procedure can sufficiently isolate the brain or non-brain 
process of interest. However, if responses from multiple 
cognitive processes, time locked to multiple classes of closely 
spaced events, overlap in time with varying inter-event 
intervals, averaging will most likely fail to identify the 
individual response time courses. For this situation, we study 
estimation of responses to all recorded events in an experiment 
by a single model using standard linear regression (the rERP 
technique). Applied to data collected during a Rapid Serial 
Visual Presentation (RSVP) task, our analysis shows: (1) The 
rERP technique accounts for more variance in the data than 
averaging when individual event responses are highly 
overlapping; (2) the variance accounted for by the estimates is 
concentrated into a fewer ICA components than raw EEG 
channel signals. 

 INTRODUCTION I.
The Event Related Potential (ERP) averaging method for 

electroencephalographic (EEG) data [1] is one way to gain 
insight into how specific cognitive processes are related to 
brain electrical activity. Traditionally, the way of increasing 
the signal to noise ratio (SNR) of an ERP estimate is to 
average epochs time-locked to a stimulus class of interest. 
This technique places severe restrictions on the experimental 
protocol: only a small number of stimulus categories can be 
used, stimulus events must be well separated in time and all 
other cognitive processes must be held constant. Violating 
the latter conditions will cause the ERP to be estimated sub-
optimally. Here we study using multiple regression as a way 
to overcome this limitation, extending the work of N. J. 
Smith [2]. In [3], Hinrichs et al. have suggested a highly 
similar approach for deconvolving fMRI responses. Hauk et 
al. and Pernet et al. [4, 5] have suggested using separate 
regression models for each individual latency, such as 
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massive univariate general linear analyses. Hendrix et al. in 
[6] have proposed using Generalized Additive Models 
(GAMs). In [2], author Smith offers a unified conceptual 
framework for ERP regression and shows how these 
different techniques relate to averaging for the purposes of 
ERP estimation. 

 
We continue this discussion by applying linear regression 

and averaging to a real EEG dataset and exhaustively 
comparing the results of the two approaches. The goal is to 
make clear that in practice, regression can offer a significant 
performance increase compared to averaging. Indeed, as 
EEG experiments become more sophisticated, with many 
(intermittent or continuous) processes being monitored 
simultaneously, averaging ceases to be an effective option. 
Independent Component Analysis (ICA) [7] has become a 
popular and often effective method for separating EEG 
sources [8, 9]. Thus, we also compared how regression and 
averaging compare with one another in both ICA component 
activations (ICs) and EEG channels.     

 BACKGROUND II.

A. A Problem With Averaging 
 

 
Figure 1.  Illustrating how averaging can produce an incorrect ERP 
estimate in the presence of overlapping activity due to closely spaced 
cognitive events. The latency window is a typical EEG epoch in a 12/s 
rapid serial visual presentation (RSVP) experiment. An ERP of 
interest (blue), is produced following each visual stimulus  every 83 
ms (black). These ERPs combine additively, giving a misleading (red) 
averaged Steady State Response (SSR) ERP estimate. Regression 
considers all the experimental events in a single additive model, 
taking into account this overlap.   
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If events in an experiment occur sufficiently close in time 
to one another, the EEG brain responses to these events will 
overlap. Taking an average of these event time-locked 
epochs will produce a summed and/or blurred ERP estimate.  

B. Data 
The experiment is fully described in [10]. 127-channel 

EEG data were collected during a Rapid Serial Visual 
Presentation (RSVP) task involving satellite picture 
presentation. The subject was shown bursts of 49 satellite 
images in 4.1 seconds (12/s.). In 60% of the bursts, a 
(flying airplane) target feature was randomly added to one 
image. At each burst end, the participant indicated by 
button press whether or not that burst contained the target 
feature. During training, they were told whether they were 
correct or not.  

 
There were nine recorded event types in the experiment, 

listed by (event-code) event-description: (1) non-target 
stimulus, (2) target stimulus, (4) “no targets” button press, 
(5) “one target” button press, (6) trial block start, (16) trial 
start, (32) “correct” feedback given, (64) “incorrect” 
feedback shown, and (129) image burst start. 

 METHODS III.
We calculated ERP estimates for a seven subject/12 

session study across nine different events using averaging 
and linear regression with Ordinary Least Squares (OLS). 
This analysis was repeated for all 127 channels of EEG data 
and again for all 127 ICs, derived by extended Infomax ICA 
[11]. We used five-fold cross-validation to obtain our 
performance figures: the ERPs were calculated with training 
data and validated on test data [12].    

A.  Preprocessing 
First, we addressed the issue of outliers and artifacts.  

We identified outlier data portions by two methods: Low 
Probability and Mutual Information Reduction (MIR). For 
the probability method we first whitened the data and 
performed a rank transform to obtain a two-tailed 
significance value for each sample. We then found 200 ms 
windows where the average log significance over all the 
sphered dimensions and time-frames was higher than 2.1 
and marked them as outliers. For the MIR method, we 
first calculated the mutual information reduction index 
[13] in 2s windows with 80% overlap using the sphering 
matrix. Then we found regions with MIR Z score of lower 
than −1.5 and marked them as outliers. We discarded 
events occurring during or near outlier periods. Out of 
23,477 events, 1,654 were identified as contaminated and 
discarded. The data were highpass filtered (−3 dB at 1 Hz) 
to reduce DC bias.     

 
All ERPs were estimated using the same maximum 

length, heuristically set for this analysis at 1 second (256 
samples), from −125 ms to 875 ms around each event. 
This defined 256 variables per event. For nine event types, 
each regression or averaging model thus contained 2304 
ERP parameters for each EEG channel or IC.  

B.  Regression Framework 
First we looked at the case of only one event type, E1, 

producing an ERP response β1. The observed signal (IC or 
channel) y is then a linear transformation of β1 plus a 
Gaussian noise term, ε ∼ Ν(0, σΙ). 

 
β1 = [ β11  β12 ... β1N ]T        (1) 

y = A1β1 + ε         (2)  
 

We position y and β1 as a column vectors of length M 
(the length of the data) and N (= 256) respectively. A1 is 
the M x N matrix of predictors, xmn, constructed from 
latency recordings. xmn has a value of 1 when the nth 
sample of ERP β1 is predicted to occur at latency m.  
 
 If we want to estimate the response to more than one 
event type, we stack the βn in a column vector, and 
concatenate their corresponding An along the second 
dimension  
 

 A = [ A1 A2 … An ]        (3) 
β = [ (β1)Τ  (β2)Τ ... (βn)Τ  ]T     (4)           

 
and subsequently  
 

y = Aβ + ε        (5) 
 
with least squares solution 
 

  βreg  = (ATA)-1ATy ≅ β        (6) 
 

C.  Performance Metrics   
We subtract the ERP estimates from the original signal 

to obtain a residual noise signal. The difference between 
the variance (power) of the original signal and the 
variance of the noise signal represents the variance 
accounted for by that ERP. We use this Reduction of 
Variance (ROV), as our metric, with higher ROV 
corresponding to better performance.  

 
ROV ≡ (PData −  PNoise)      (7)  

 
The reason for using ROV instead of Signal to Noise 

Ratio (SNR)  
 

SNR ≡ PSignal /PNoise         (8) 
 

is that we aren’t especially interested in maximizing the 
size of the ERP estimate (the “signal” in this case). ROV 
measures to what extent the estimate accounts for overall 
variance in the data. 
  For each event type in the experiment, we computed the 
ROV for averaging by extracting each epoch (yi) and 
subtracting the averaged ERP estimate βav from it. 
 

ε 
av

i = yi − βav          (9) 
ROVav = < var[yi] −  var[ε 

av
i] >          (10) 
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where the mean is taken across all the events of that type. 
For regression, we computed a signal estimate  
 

yreg
 = Aβreg

          (11) 
 

then, extracted each epoch from the estimated signal (yreg
i) 

and the original signal (yi).  
 

ε 
reg

i  = yi − yreg
i          (12) 

ROVreg = < var[yi] −  var[ε 
reg

i] >          (13) 
 
 We use normalized estimates from (14) to identify which 
channels/ICs have the highest ROV percentage.  
 

ROVʹ′ = ROV/var[yi]       (14) 
 
ROVʹ′ of the top 20 channels/ICs from each dataset are 
averaged to obtain the final estimates for each event type.   
For significance testing we applied a two-sample t-test (p 
< 0.01) to the cross-validation folds of all twelve datasets. 

 RESULTS IV.

A.   ERP Estimates (Figure 2) 
Due to the 83-ms stimulus onset asynchrony, simple 

average responses to non-target type 1 events had 
significant confound from overlapping responses. As 
shown in Figure 2, the averaged estimate does not reflect 
the ERP associated with a single non-target frame (Figure 
1 shows graphically how this occurs). In this case, 
regression recovered a plausible visual response to each 
non-target stimulus event. Event type 6 did not usually 
occur near any other experiment events. Here, as 
expected, regression and averaging gave similar results.  

B. Performance as Measured by ROV (Figure 3) 
Event type 1 (Figure 3, top panel) shows the most 
significant difference between the two methods for both 
ICs and channels. For the most frequent event type 1, 
regression has the advantage for both channel and IC 
measures. Compare the difference in the regression versus 
the average ERP (here, SSR) estimates in Figure 2 (top 
panel). The averaging method clearly did not estimate the 
ERP for this event type. For the other event types, which 

 

 

 

 
Figure 2.  Comparison of ERP estimates by averaging (red) and 
regression (blue) for five event types. ROV was statistically higher for 
regression in event type 1. stimates are for a lateral occipital IC. 

Figure 3.  Comparison between averaging and regression ROV for 
EEG channels and ICA components. The components and channels 
are sorted and plotted in normalized ROV form. 
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are less affected by overlap, the two methods performed 
similarly. 

 
Comparing IC and channel results, we notice a peak of 
ROV in the first 2-3 ICs for each stimulus type. Since ICs 
are thought to typically represent the synchronous field 
activity across a single cortical patch [13, 14], broadly 
projected to the scalp electrodes by volume conduction, 
we may expect the regression result to show higher ROV 
for a smaller number of ICs than scalp channels. The ROV 
for channels is indeed distributed across a larger number 
of channels. This is expected, since EEG signals at scalp 
electrodes that are physically close are highly correlated 
[8].   
 
Note that normalized ROV is quite low across the board: 
no more than 12% of the variance in any channel or 
component signal is accounted for by either method, and 
usually much less. This is consistent with the frequent 
observation that most EEG signal variance is not produced 
by time and phase locked responses to external events. 

    DISCUSSION V.
As demonstrated in [2], OLS regression can be thought of 

as a natural extension of event-related potential averaging 
that can be applied in a larger range of experimental 
conditions. Mathematically, OLS reduces to averaging when 
there is no overlap between experimental responses (e.g. 
Figure 2, bottom panel).  

 
Our ROV analysis showed that regression is capable of 

explaining more variance in experimental data than 
averaging. This overall comparison is limited in the sense 
that it cannot tell us whether a certain portion of an ERP 
waveform is best represented by either method. In other 
words, whether or not a specific peak in a response is better 
estimated by averaging or regression cannot be decided from 
this analysis alone. The potential benefit of regression is 
only clear when considering an ERP as a whole, and should 
depend on its degree of overlap with responses to other 
experimental events. 

 
Possible extensions: Since OLS is the simplest estimator 

beyond event-locked averaging, the predictive performance 
of our model might be expected to increase if it used a more 
modern estimator. A problem with estimating EEG 
parameters by OLS is that artifacts can drastically affect its 
L2-norm error function. The Least Absolute Deviations 
(LAD) [15] technique uses, instead, an L1-norm error 
function, and thereby may provide a more robust estimator. 
The performance of the model is also highly sensitive to its 
number of parameters. Introducing regularization on the 
ERP parameters would be a reasonable way to control for 
this effect and discourage over-fitting.     

 CONCLUSION VI.
When overlapping evoked responses are produced by 

experimental events that are closely spaced in time, multiple 

stimulus events may contribute to any given average event-
related potential (ERP) feature and some additional 
assumption is necessary to properly segregate this variance. 
The regression ERP (rERP) technique assumes that ERPs to 
distinct events sum linearly, even when they are closely 
spaced in time. In all other ways, the rERP and ERP 
measures are identical. Yet, as we show here, the rERP 
approach can account for more total data variance, showing 
that the rERP assumption is viable for analysis of event-
related potential information in rich, complex EEG data sets. 
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