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ABSTRACT OF THE DISSERTATION

Scaling up psycholinguistics

by

Nathaniel J. Smith

Doctor of Philosophy in Cognitive Science

University of California, San Diego, 2011

Roger Levy, Chair
Marta Kutas, Co-Chair

This dissertation contains several projects, each addressing different questions

with different techniques. In chapter 1, I argue that they are unified thematically by

their goal of ‘scaling up psycholinguistics’; they are all aimed at analyzing large data-

sets using tools that reveal patterns to propose and test mechanism-neutral hypotheses

about the brain’s language processing architecture.

In chapter 2, I investigate the well-known phenomenon that words which are

more predictable in context are read faster than words which are not. I suggest that this

is best understood as a special case of a phenomenon whereby more predictable events,

whether linguistic or not, are in general processed more quickly than unpredictable ones,

and propose a general model of why this happens. When combined with the constraints

xii



imposed by language’s incrementally processed serial structure, this model predicts a

logarithmic relationship between word probability and reading time, and I show that

this in fact holds in two large data sets.

In chapter 3, I turn to the question of how the brain produces fine-grained quanti-

tative predictions; computationally, this seems impossible given the sparsity of the data

it has available. This suggests it uses some kind of learning biases to guide generaliza-

tion (a classic poverty of the stimulus argument), and I propose to study these biases

by comparing subjective (cloze) probability with objective corpus probabilities. In Ex-

periment 1, I find a number of candidate biases; in a series of follow-up experiments, I

argue that some are probably artifactual, but others may in fact give clues to the brain’s

mechanisms for generating linguistic expectations from experience.

Chapters 4 and 5 develop a methodology for extending ERP analysis to handle

continuously varying stimulus attributes, partial confounding, and overlapping brain re-

sponses to events occurring in quick succession. These techniques are motivated by the

desire to analyze EEG recorded in more naturalistic language paradigms (which contain

all of the above challenges), but they are not specific to language studies, and have many

potential applications for EEG/MEG research more generally.

xiii



Chapter 1

Introduction

In this dissertation, I consider a number of questions whose connections are,

perhaps, non-obvious.

In chapter 2, I investigate the well-known phenomenon that words which are

more predictable in context are read faster than words which are not. I suggest that this

is best understood as a special case of a phenomenon whereby more predictable events,

whether linguistic or not, are in general processed more quickly than unpredictable ones,

and propose a general model of why this happens. When combined with the constraints

imposed by language’s incrementally processed serial structure, this model predicts a

logarithmic relationship between word probability and reading time, and I show that

this in fact holds in two large data sets.

In chapter 3, I turn to the question of how the brain produces fine-grained quanti-

tative predictions; computationally, this seems impossible given the sparsity of the data

it has available. This suggests it uses some kind of learning biases to guide generaliza-

tion (a classic poverty of the stimulus argument), and I propose to study these biases

by comparing subjective (cloze) probability with objective corpus probabilities. In Ex-

periment 1, I find a number of candidate biases; in a series of follow-up experiments, I

argue that some are probably artifactual, but others may in fact give clues to the brain’s

mechanisms for generating linguistic expectations from experience.

Chapters 4 and 5 develop a methodology for extending ERP analysis to handle

continuously varying stimulus attributes, partial confounding, and overlapping brain re-

sponses to events occurring in quick succession. These techniques are motivated by the

1



2

desire to analyze EEG recorded in more naturalistic language paradigms (which contain

all of the above challenges), but they are not specific to language studies, and have many

potential applications for EEG/MEG research more generally.

Why these projects, together in this thesis? To answer, let me digress to a now-

classic paper of Newell (1973), who reviewed contemporary work in cognitive psychol-

ogy, and expressed his concern that while many interesting phenomena were explored,

the results merely accumulated. He asked: how can we proceed so that one day we will

have, not dozens of little theories of particular phenomena, but one mature theory of our

inner workings that is “adequate in power and commensurate with [our] complexity”?

(p. 284)

This question is particularly apt for psycholinguists, since language and inter-

action is so central to our power and complexity as a species. We might imagine an

adequate theory of low-level vision that made no reference to visual art — but what

would it even mean to have a theory of “low-level language”? All of the complexity

of human culture, individual development, and individual experience inheres in each

human interaction. (And after all, what is culture but the accumulation of interactions?)

The chapters of this dissertation aren’t bound by any single topic or methodology

— but they all grow in some way out of my struggles with Newell’s question.

At the core of his critique is our habit in psychology of generating binary oppo-

sitions — nature/nurture, serial/parallel, discrete/continuous, and so on and so forth —

which are then argued back and forth as independent questions. It’s this independence

that bothered Newell the most; his prescription was to build unified models that would

allow and require us to combine data from many ostensibly different experiments into a

single whole, and he suggested production system models as the unifying tool.

When I look at these dichotomies, it’s a different objection that first springs to

mind. My experience is that even in typical, workaday computer programming, there

are generally hundreds or thousands of mechanisms that could be used to accomplish

any particular task. I would have no idea how to divide this space of solutions into

simple categories like serial versus parallel or discrete versus continuous — they’d be

some of one and some of the other, or, well, actually the distinction doesn’t make sense

in these cases, and so on down the list — they just wouldn’t neatly fit. But the brain
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isn’t solving the kinds of algorithmically simple problems I’m thinking of, like table

lookups and sorting lists — it’s decoding the world, making decisions, and coordinating

action. It’s a supercomputer because it has to be. So the chances seem rather slim that

any particular dichotomy will actually capture a useful generalization about the brain’s

mechanisms — and in fact, experience says that after a time, these dichotomies usually

dissolve rather than resolve; the consensus conclusion is that it’s some of one and some

of the other, or, well, actually the distinction doesn’t make sense in these cases. . .

None of which is to say that such oppositions can’t be a useful tool for guiding

our thinking. But this, I feel, is the greatest challenge we face in achieving Newell’s

dream: that there are far, far more viable theories than we can enumerate or articulate.

So how will we ever find our way to the right ones?

Newell’s motivation for advocating production systems instead of some other

model were very simple: he “kn[ew] of only one model of the human control pro-

cesses” (p. 301), and production systems were it. Yet in these more computationally

sophisticated days, it’s clear that there are far more ways to model the sequencing and

coordination of operations — I can name a dozen broad classes just among the main-

stream programming paradigms. If there are a thousand different ways the brain might

solve some problem, and we pick one at random — well, we might get lucky. But it

isn’t likely. And perhaps there aren’t a thousand, but a million, or more.

So for me, the idea of unification may be a valuable tool, but by itself it’s no so-

lution to the most urgent problem — there are still too many reasonable unified theories

to identify the correct one. But what would help, then? I can’t claim that my answers

are novel, but I see three general steps we can take.

The first and most obvious is that we need more, bigger data. We could formalize

this using information theory, but it’s clear enough intuitively: if you want to distinguish

between a million theories, you need a lot more data than if you just need to distinguish

between two; in practice, this need is reflected by things like Bonferroni correction.

Since big data is generally messy data, we’ll need statistical techniques that let us handle

that. And furthermore, to see the benefit of this data we’ll need methods that let us

extract more information from each data set than the binary opppositions that are typical

of psychological statistics: bigger/smaller, interaction/no-interaction, related/unrelated.
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You can’t play twenty questions with nature and win — at least, not if you’re asking

yes/no questions. An example of this occurs in chapter 2, where the critical prediction

is about the shape of a curve rather than its existence; novel methods allow us to extract

this information from two large behavioral corpora.

Of course, more data by itself doesn’t help if you don’t know what questions to

ask it, and even if we believe that there exist many viable theories, that doesn’t mean

we’re smart enough to actually name and describe them all. So my second answer,

related to the first, is that an even more important goal for new methodological tools is

to help us find empirical patterns which can suggest new theories, or at least point us

in the right direction. Our tools need to reveal patterns, not just test them. Chapter 3

provides an example of this usage, wherein we start with a very general question about

how speakers generate their predictions about upcoming linguistic material, gather a

large data set, ask the data what patterns we should be trying to explain, and then run

follow-up experiments to test the resulting hypotheses.

Meanwhile, one of the great potential advantages of EEG over other psycholin-

guistic measures like eye-tracking is the fine temporal granularity and richness of the

data that we acquire. In chapter 2, the central argument is based on how long people

spend looking at words while reading. EEG potentially allows us a window into what

they are doing while they are looking at these words. However, while corpus methods

have become quite popular within behavioral psycholinguistics, the standard EEG anal-

ysis technique of ERP averaging is not able to handle analogous data sets. Chapters 4

and 5, therefore, are devoted to developing methods to allow us to analyze big messy

EEG data-sets comparable to the large behavioral data-sets used in earlier chapters, and

find the patterns in them.

So we need methods to distinguish between numerous theories, and we need

methods to find these theories. My third suggestion is that we also need theories about

the space of these theories — we need, if you will, meta-theories. Of course, we’ve al-

ways had these in some sense — the nature/nurture debate presupposes that all theories

can be divided into one or the other camp — but perhaps we can do a better job of it.

This is why I find it attractive to work at Marr’s computational level, using, e.g., ratio-

nal analysis approaches (Anderson, 1990; Oaksford & Chater, 1998): it lets us make
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and test hypotheses about the overall shape of the language processing system, indepen-

dently of any specific commitments to mechanism (which, let’s face it, would certainly

be wrong). A rational model is, in some sense, not itself a theory about the processing

mechanisms, but a theory about what kind of theories about the processing mechanisms

(i.e., the algorithmic and implementational levels) might work. This approach is seen in

chapter 2, where we use rational arguments to postulate an extreme form of preparatory

processing to explain predictability effects on processing times, and in chapter 3, where

the initial question of how people make these predictions is motivated by computational

considerations, and one of our results is that our participants seem to use methods sim-

ilar to those that have been found particularly efficacious computationally. My focus

on linguistic predictability in both cases also reflects this reasoning; the construct of

predictability is meaningful without reference to any specific processing mechanisms.

Of course, each project also has its own logic, scientific questions, and results,

and I certainly don’t mean to imply that they even begin to exhaust the scope of an

adequate theory of language. But one of the underlying motivations for each, the one

that ties them together, is this dream that each takes a few fumbling steps towards — the

dream of scaling up psycholinguistics to a theory whose power is commensurate with

language’s complexity.
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Chapter 2

A Rational Model of Predictability

Effects on Cognitive Processing Times

Consider two similar sentences: The children went outside to play and My

brother came inside to play. They have the same grammatical structure, and both con-

tain the word play, used with approximately the same meaning. Yet something must be

different, for native English speakers on average read play faster when it appears in the

first sentence than the second. The difference is predictability (Ehrlich & Rayner, 1981;

Kliegl, Nuthmann, & Engbert, 2006; McDonald & Shillcock, 2003a; Rayner & Well,

1996) — if we delete the word play and ask speakers to fill in the blank (Taylor, 1953),

then their guesses on the first sentence are correct more often than on the second. It

seems deeply intuitive that that more predictable items are processed more quickly, but

it poses a theoretical conundrum. If the brain is capable of understanding the word play

so quickly in one case, then why does it dawdle in others? And this result is not unique

to human language comprehension; predictability regularly produces such speed-ups

across diverse species and tasks (Carpenter & Williams, 1995; Froehlich, Herbranson,

Loper, Wood, & Shimp, 2004; Janssen & Shadlen, 2005; Pang, Merkel, Egeth, & Olton,

1992) — but why?

Since the neural mechanisms involved presumably vary widely, explaining this

pattern requires some way to generalize beyond the details of individual cognitive pro-

cesses, which conventional theories of processing times are ill-equipped to do. Instead,

we propose a rational-analysis approach to processing times. By ‘rational’, we mean

6
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that we assume the brain has been sufficiently tuned through evolution that it functions

as a near-optimal computational device, that on well-practiced tasks will find the best

solution possible given the task’s inherent constraints (Anderson, 1990; Oaksford &

Chater, 1998). Previously, this approach has successfully explained behavior in such

areas as sensory estimation (Ernst & Banks, 2002; Knill & Richards, 1996), decision

making (Carpenter & Williams, 1995; Oaksford & Chater, 1994), and motor control

(Harris & Wolpert, 1998; Todorov, 2004), but has been unable to explain how long it

should take to compute such solutions. One might, after all, expect an ‘optimal’ com-

putational device to perform all computations in near-zero time — but processing times

are large and variable.

Previous rational theories have used two strategies to dodge this apparent con-

tradiction. The first is to assume that there are various fundamental mental operations

that inherently take some specified amount of time to perform, and restrict the rational

analysis to finding the best way to combine these operations to accomplish higher-level

tasks. For instance, Anderson and Milson (1989) assume that retrieving a single item

from memory requires a fixed amount of time, and give a rational model of the order

in which items should be retrieved so as to minimize the total time. Similarly, ACT-

R models conventionally assume that executing a single production rule takes 50 ms

(Anderson & Lebiere, 1998). But where do these numbers come from? In this approach

they are inherently mysterious, arising from forces that are simply outside rationality’s

scope.

The second strategy is to model reaction time variability as arising from varia-

tions in the amount of perceptual data that must be acquired to accomplish some task

(e.g., Carpenter & Williams, 1995; Laming, 1968; Norris, 2006, 2009; Stone, 1960).

Since the external world provides data at its own pace, the only way to acquire this

data is to wait for it to arrive, and if we need more data we must wait longer. These

models have no place for reaction time effects to be driven by task-related variations

in cognitive processing itself; the brain’s computations are effectively assumed to occur

instantaneously.

We tend to believe that cognitive processing times are both non-arbitrary and

non-zero, which motivates the present work. Here, we present a third strategy, which
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models variation in cognitive processing times as arising directly from rational optimiza-

tion, without imposing the time required to perform mental operations as an extrinsic

constraint.

2.1 A rational model of cognitive processing times

To bring cognitive processing times into the scope of rational analysis, we rely

on one key idea: that any particular computation — whether it be a high-level task like

understanding a word, or a lower-level operation like memory retrieval or production

rule execution — can be neurally implemented in a wide variety of ways. Each possible

implementation has an associated speed, and also, critically, some biologically imposed

cost. When choosing an implementation, therefore, the brain must rationally balance

the benefits of speed against the resources required to achieve it (Figure 2.1).

To motivate such a trade-off, consider the star-nosed mole. So far as we are

aware, these moles hold the record for the fastest processing times ever observed in a

complex sensorimotor task: they can detect a prey item and then program an appropri-

ate tactile saccade in a scant ∼10 ms of central processing time (Catania & Remple,

2005). In comparison, humans seem terribly slow, typically requiring 100–150 ms just

to program visual saccades. Presumably if our visual system were designed differently

it could approach the mole’s speed — but the reason these moles are so fast is that they

survive by eating large numbers of very small prey items extremely quickly (Catania

& Remple, 2005). Our survival does not depend so directly on the speed of our sac-

cades, and so for us the resources required to achieve such speed would produce no

commensurate payoff.

Our model’s first claim is that such cases are typical, even on non-evolutionary

timescales: that in general, task-level computation times are far from the physical lim-

its of neural computation, and instead are determined by a rational trade-off between

the costs of constructing, maintaining, and using high-speed neural circuits versus the

benefits of quick computation — benefits ultimately determined by evolutionary fitness.

These benefits will vary from task to task and situation to situation within the lifespan

of an individual. For well-practiced behaviors, then, where the brain has the time, moti-
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Figure 2.1: For any particular computation, there are many possible implementations,
which are depicted here schematically as the shaded region. Each implementation
achieves some speed and requires some expenditure of resources. While many com-
binations of speed and cost are possible, there are no implementations that are both
extremely fast and extremely cheap. If we pick an implementation rationally, then we
will never pick one like A, since there are other implementations (e.g., B and C) which
are both faster and cheaper. But to decide between implementations on the frontier,
like B and C, we must decide what relative value we place on speed versus resource
expenditure. (Note that for simplicity, we assume that all implementations use differing
methods which in the end accomplish identical computations; we are not proposing a
model of speed-accuracy trade-offs. One could imagine extending this diagram with a
third axis to indicate accuracy, but we do not explore this further here.)
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vation, and experience needed to develop near-optimal computational techniques, it will

allocate more computational resources to handling events for which speed is especially

beneficial, and this will cause systematic, task-related differences in processing times.

Note that this claim means that two nearly identical stimuli — ones which re-

quire equally complex processing, and which do, in fact, receive equally complex pro-

cessing — might still produce different reaction times solely because the relevant con-

text gives the brain some reason to place a higher value on processing one of them

quickly than the other.

But why would it be especially beneficial to process play quickly when it fol-

lows The children went outside to, but not when it follows My brother came inside to?

Answering this question requires a second claim: that at least some of the mechanisms

by which the brain allocates resources are themselves slow enough that it would be use-

less to initiate them after the relevant event has occurred. For instance, if we have a

choice of either processing an event in 100 ms, or else allocating additional resources to

process it in 50 ms, but this allocation will itself take 100 ms, then we might as well not

bother. Any such resources can be effectively used only if they are allocated to an event

before it occurs — the optimal strategy is to prepare. And intuitively, any resources we

spend preparing are spent for good, but only produce a speed-up if spent on an event

that does eventually occur; it is therefore better to invest resources preparing for events

which are more likely to occur.

2.1.1 Deriving the generic predictability effect

To formalize this intuition, we define an overall cost function describing the

trade-off between preparatory resource allocation and processing speed. Suppose that

there are n events (e.g., the words of English) possible following a given context (like

The children went outside to. . . ). For each event i, the brain must determine what quan-

tity of resources to allocate to this event before it occurs; we denote this quantity ri. In

reading, ri summarizes the cost of such diverse processes as the long-term allocation of

dedicated cortical circuitry to particularly common words and syntactic constructions,

the medium-term maintenance in working memory of facts relevant to the current topic

of conversation, and the immediate retrieval of the sensory form of specific anticipated
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words. Our goal is to define a function C(r1, . . . , rn) to describe the total cost of some

set of resource allocation choices r1, . . . , rn; the rational resource allocation is the one

which makes the cost C(r1, . . . , rn) as small as possible.

This cost needs two components, to capture the two competing priorities which

are being trading off against each other. The first component is the cost of slow process-

ing. To describe this, we need to know just how long it will take to process an event that

has received any given quantity of resources — i.e., in order to decide between different

points on the frontier shown in Figure 2.1, we need to know what the shape of this fron-

tier actually is. This presumably varies for different tasks, so for now let us simply use

T (r) to denote the minimal time (in milliseconds) required to process an event which

has received r resources. In Figure 2.1, B and C are two different points on the graph of

T (r), and Figure 2.2a shows two example forms that T (r) might take. If the event that

actually occurs is denoted A, then it will take T (rA) milliseconds to process.

The second component of the cost function is the cost of the resources being

allocated, r1, . . . , rn. For simplicity, we assume that these are measured on a scale

where one unit of resources has the same value to the organism as one millisecond of

additional speed in processing the event. In the end, the organism will only pay the

processing time cost T (rA) for the event that actually occurs, but must pay the resource

allocation costs r1, . . . , rn for all the potential events that it prepared for. Therefore, the

total cost that will end up being paid to first prepare for and then process an event is:

Cactual(r1, . . . , rn) = T (rA) +
n∑
i=1

ri.

However, in our model, resources must be allocated before A occurs, so the brain

cannot optimize this actual cost, even in principle. What it can do is optimize the

expectation of the actual cost, so that in the long run the total cost actually paid on

average will be minimized. We assume access to a context-dependent probability

distribution P over potential events, so that P (A = i|context) is the probability that i

will be the event that actually occurs. The final cost function that we propose is
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minimized by preparatory resource allocation is therefore

C(r1, . . . , rn) = EP
[
Cactual(r1, . . . , rn)

∣∣context
]

= EP

[
T (rA) +

n∑
i=1

ri

∣∣∣context
]

where EP [·] denotes the expectation under the probability distribution P . Because∑n
i=1 ri does not depend on A, we can pull it out of the expectation and simplify

further:

= EP
[
T (rA)

∣∣context
]
+

n∑
i=1

ri

=
n∑
i=1

[
P (A = i|context)T (ri)

]
+

n∑
i=1

ri

=
n∑
i=1

[
P (A = i|context)T (ri) + ri

]
.

This final formula has a simple structure, in which each event i makes two in-

dependent contributions to the total cost — its portion of the expected processing time,

P (A = i|context)T (ri), and its resource cost, ri. These are depicted graphically in

Figures 2.2b and 2.2c, respectively. Because the contributions of different events sum

linearly, the combination of values for r1, . . . , rn which minimizes the total cost can be

obtained by examining each ri separately, and finding the value which minimizes its

unique contribution to this total cost. This unique contribution, and its minimization, is

illustrated in Figure 2.2d.

It is worth calling attention to a number of simplifying assumptions that we have

made, and that a more nuanced model might relax. These include: (a) fast response is of

equal value for each possible event; (b) if two events are allocated equal resources, then

they produce equal processing times, so a single function T (r) works for all events;

(c) all information in the context is available in time to be used to optimize resource

allocation; (d) resources spent preparing for one event give no benefits for other events;

and (e) resource costs across possible events combine additively, with no limit on the
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Figure 2.2: Finding the value of ri which minimizes event i’s unique contribution to
the total expected processing cost. First row: T (r) = 1/r. Second row: T (r) =
R0 log(R0/r). The first T (r) is given purely as an example; it may or may not corre-
spond to any real task. The second T (r) is the one we derive for language processing,
shown here for R0 = 4.4 (estimated from self-paced reading data). The x-axis of each
graph is the range of possible values that ri may take. (a) Plots of T (r). Note the similar-
ity between these graphs and Figure 2.1. (Dotted lines are explained below.) (b) Plots of
P (A = i|context)T (ri), the contribution of each event to the expected processing time,
for events with probability 0.2, 0.5, and 0.8. (c) Plots of ri, the contribution of each
event to the overall resource allocation cost. (d) The sum of b + c is the combined con-
tribution of this event to the total cost. The rational value for ri is given by the minimum
of this function (dotted lines). For T (r) = 1/r the events will be allocated 0.45, 0.71,
and 0.89 units of resources respectively, and, as shown in a, these allocations would re-
sult in processing times of 2.2, 1.4, and 1.1 ms if such events are actually encountered.
For T (r) = R0 log(R0/r), the events receive 0.9, 2.2, and 3.5 units of resources, and if
encountered would be processed in 7.1, 3.1, and 1.0 ms.
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total resources available. We leave a full examination of these issues for future work;

our interest here is in deriving the effect of predictability on processing time.

To do this, we solve for the values of r1, . . . , rn that make the derivative of

C(r1, . . . , rn) equal to zero; these are the values that minimize the total cost, and thus are

rational. We denote these particular values as r∗1, . . . , r
∗
n. When we take the derivative

with respect to ri, all but one of the terms in the summation disappear, leaving

∂C(r1, . . . , rn)

∂ri
= P (A = i|context)T ′(ri) + 1 = 0

where T ′ represents dT (r)/dr, the derivative of T . Therefore

r∗i =
(
T ′
)−1( −1

P (A = i|context)

)
. (2.1)

where (T ′)−1 represents the functional inverse of T ′ (not the reciprocal). The rational

processing time t∗i for stimulus i— a quantity more amenable to empirical measurement

— is simply

t∗i = T (r∗i ). (2.2)

If we know the T (r) that applies to some particular task, then Equations 2.1 and 2.2

give our model’s corresponding predictions about resource allocations and processing

times. For instance, if T (r) = 1/r, then we find by substitution and simplification that

r∗i =
√
P (A = i|context) and

t∗i = 1/
√
P (A = i|context).

Note that this case, our model predicts the standard pattern of the processing time

for an event t∗i getting smaller as that event’s predictability P (A = i|context) grows

larger. This is not a coincidental feature of the particular example we chose; it holds

for any T (r) which is monotonic decreasing and strictly convex.1 In plain English, this

means that it holds whenever resource investment produces speed-ups in processing, but

increasingly larger investments produce diminishing returns. This describes essentially

any reasonable T (r), which explains why predictability has a consistent effect across so
1See Appendix 2.A for proof, or, more intuitively, consider Figure 2.2, and how the curvature of the

graph in the first column ultimately leads to the ordering of the minima in the last column.
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many disparate tasks and species.

2.1.2 Deriving the form of the predictability effect in language com-

prehension

To make more detailed predictions, we need more information about T (r)’s pre-

cise form, which presumably varies depending on the situation, the computations re-

quired, and their underlying neural implementation. Therefore, we now focus on apply-

ing the model to natural language reading in particular, which as a test case has several

attractive features. First, it is a skill that many adults have practiced heavily over multi-

ple decades, and thus we can expect well-optimized behavior. Second, processing times

can be measured using well-established methods (Just, Carpenter, & Woolley, 1982;

Rayner, 1998). Finally, words in ordinary text exhibit a wide range of probabilities,

allowing us to study contexts where some items are predicted with very low probability

— predictions that would be difficult to induce by within-study training.

To apply our model to reading we need to answer two questions. First, what is

the appropriate T (r)? In principle this could determined by measuring the benefits of

fast understanding and the costs of fast computation, but this seems beyond our present

capabilities. Second, at what temporal granularity does preparation — and its asso-

ciated cost-benefit trade-off — occur? To apply our model to linguistic input, which

unfolds sequentially over time, we must split that input up into discrete chunks which,

we assume, are processed in sequence. But how should we make this division? By sen-

tences? clauses? words? morphemes? letters/phonemes? or something else? If we turn

to the literature to determine the granularity of language processing, then we realize that

careful research has failed to find any units that are processed indivisibly: in auditory

speech comprehension, where input truly is continuous in time, processing appears to

be fully incremental, with even small amounts of phonetic material (e.g., the ca– in can-

dle) processed immediately (Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995;

Marslen-Wilson, 1975). Even in reading, input does not arrive nicely segmented—the

eye regularly skips words, or views a single word in pieces over multiple fixations—and

the core comprehension processes are presumably shared with spoken language. Put

together, it seems we should not privilege any particular processing granularity. This is
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only possible if we require a single law-like relationship between time and predictabil-

ity to hold simultaneously at all scales.2 Fortunately, it turns out that this requirement

removes the need to measure T (r) directly — there is only one form of T (r) which is

compatible with fully incremental processing of sequential input.

To see this formally, suppose that we have an event i (e.g., a word) which can be

partitioned into a sequence of smaller events i1, . . . , im (e.g., the phonetic segments in

that word). If we define our model at the level of the word, then from Equations 2.1 and

2.2 we predict that the time to process word i will be

t∗i = T

((
T ′
)−1( −1

P (A = i|context)

))
.

Alternatively, if we define our model at segment granularity, we get predictions

t∗ij = T

((
T ′
)−1( −1

P (Aj = ij|context, i1, . . . , ij−1)

))
.

The crucial point here is that both t∗i and t∗ij are functions only of the probabilities of

i and ij respectively—and that the function is the same in both cases. Next, we note

that under the segment model, the total time to incrementally process word i is the sum

of the times to process its parts,
∑
t∗ij . Under the word model, of course, the time to

process word i is t∗i . If these quantities were to differ, then we could distinguish them

empirically. The constraint imposed by incrementality, then, is that

t∗i =
m∑
k=1

t∗ij

2If this were not so, then given a sufficiently large data set we would be able to compute probabilities
at multiple granularities, and empirically determine the brain’s language comprehension ‘chunk size’ —
at least with respect to predictive processing — by checking which granularity best explained reading
time behavior.
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We can compute an analogous relationship for the probabilities: by the chain rule, we

have

P (A = i|context) =
m∏
j=1

P (Aj = ij|context, i1, . . . , ij−1).

Or in short: times add and probabilities multiply, so the function which relates them

must turn products into sums — and the only functions which have this property are

logarithms. Since times are non-negative, the only way to satisfy the incrementality

constraint is if

t∗i = −R0 logP (A = i|context)

for some free parameter R0 > 0, where “log” denotes the natural logarithm. As shown

in Appendix 2.B, this implies that

T (r) = R0 log
R0

r

where 0 ≤ r ≤ R0. This is the T (r) which we suggest holds for language comprehen-

sion, andR0 is interpretable as the quantity of resources needed to achieve instantaneous

processing, T (R0) = 0.

This reference to instantaneous processing might at first seem implausible, but

note that as r asymptotically approaches R0, T (r) grows flatter, indicating that marginal

increases in preparatory resource expenditure produce smaller and smaller returns in

terms of processing time; such small returns are only justified if we are increasingly

certain that the event will, in fact, need to be processed. If we plug our T (r) into Equa-

tions 2.1 and 2.2, we find the rational resource allocation and subsequent processing

time for for event i are

r∗i = R0 P (i|context)

t∗i = −R0 logP (i|context). (2.3)

which means that the extreme, r∗i = R0 and t∗i = 0, is predicted to occur only for an
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event with probability one. This makes sense — if there is no uncertainty whatsoever

about upcoming input then an organism can do all necessary processing in advance, and

the input itself, when it does arrive, can be safely ignored. In reality, of course, perfect

certainty is never achieved, so this model predicts that processing times for real input

will always be greater than zero.

Equation 2.3 is useful for another reason — it shows that our general model,

when applied to sequential input that is processed in a fully incremental fashion, makes

a concrete, testable prediction: that the processing time for item i will be proportional

to the logarithm of P (A = i|context), with −R0 as the constant of proportionality.

2.2 Empirical validation

Previous authors have hypothesized such a logarithmic relationship between

cognitive processing times and predictability under the moniker of surprisal (Hale,

2001; Levy, 2008), but not derived it from independently motivated principles such

as rationality and incrementality. Nor has this hypothesis been tested; the difficulty

and expense of accurately estimating word probabilities using traditional cloze norming

(Taylor, 1953) have limited studies to examining only the upper range of probability

(≥ 10−2), primarily using small data-sets and factorial designs3 (Ehrlich & Rayner,

1981; Rayner & Well, 1996; McDonald & Shillcock, 2003a, 2003b; Frisson, Rayner, &

Pickering, 2005). As a result, while predictability’s qualitative effect was first reported

some decades ago, the quantitative form of this relationship has never been measured.

To avoid these limitations, we borrowed a probabilistic language model from the

field of computational linguistics, and used it to algorithmically estimate word probabil-

ities4 in two large reading-time corpora. These corpora use different methodologies —

one measures eye-movements and the other self-paced reading times — with different

participant populations and different texts. The resulting data-sets are large enough to

3One exception is the work of Kliegl et al. (2006) and Kliegl (2007), but as their binning-based ap-
proach for assessing curve shape did not partial out confounds and was restricted to conditional word
probabilities in the range 0.01–1, no clear picture emerged.

4Since we predict the same relationship holds regardless of the granularity we use to divide up the
linguistic stream, we can pick whatever units we like, and using words facilitates the use of standard
techniques like self-paced reading.
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examine the fine-grained empirical relationship between probability and reading time

over a wide range of probabilities.

2.2.1 Materials and Methods

Eye-tracking

Gaze durations (Rayner, 1998) were extracted from the English portion of the

Dundee corpus (Kennedy, Hill, & Pynte, 2003), which records eye movements of 10

native speakers each reading 51,502 words of British newspaper text. Previous work

(Demberg & Keller, 2008; Frank & Bod, 2011) has reported predictability effects in this

corpus, but did not examine curve shape.

Self-paced reading

Moving-window self-paced reading (SPR) times (Just et al., 1982) were mea-

sured for 35 UCSD undergraduate native speakers each reading short (292–902 word)

passages drawn from the Brown corpus of American English (2860–4999 total words

per participant, mean 3912). 3 participants with comprehension-question performance

at chance were excluded.

Probability estimation

Modified Kneser-Ney trigram word probabilities (Kneser & Ney, 1995; Chen &

Goodman, 1998) were estimated from the British National Corpus (BNC Consortium,

2001) using SRILM v1.5.7 (Stolcke, 2002), and combined with a conditional bigram

cache modeling word burstiness (Goodman, 2001). SPR analyses were adjusted for

British/American spelling differences using VARCON (Atkinson, 2004).

Curve estimation

We used mgcv v1.6-2 (Wood, 2004, 2006) to predict reading times using pe-

nalized cubic spline functions (20 d.f.) of word log-probability, and as controls entered

spline functions of position in text and the interaction of word length and log-frequency,
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and factors indicating participant identity and (eye-tracking only) whether the previ-

ous word had been fixated. To capture spillover (Mitchell, 1984; Rayner, 1998), log-

frequency/word-length interaction and probability terms were included for each word in

an M -word window up to and including the current word, where M was chosen empiri-

cally to capture the effect present in each data set (eye-tracking: M = 2; SPR: M = 4).

For further discussion of penalized spline smoothing, see Appendix 2.D. Total effect of

probability was then estimated by summing effects over each word in this window. All

words were analyzed except those at the beginning or end of a line, or for which some

word in the window did not appear in the British National Corpus, appeared adjacent to

punctuation, or contained numerals. Eye-tracking analyses excluded unfixated words;

SPR analyses excluded outliers (reading times <80 ms, >1500 ms, or >4 sd above

participant-specific means). (Eye-tracking: N = 166522; SPR: N = 51552.) Fitting

was by (penalized) least squares; confidence intervals were estimated by bootstrapping

both participants and cases within participants, using the mgcv fitter’s weights pa-

rameter to avoid replicating data across folds in its internal cross-validation routine. All

reported results were robust to choice of spline basis, use of least squares estimation

versus maximum likelihood estimation with the assumption of heavy-tailed (gamma-

distributed) error, and the use of larger spillover windows (increased M ).

Estimation of R0 for reading

To produce the second row of Figure 2.2, we repeated the above regression anal-

ysis on the SPR data, but now constraining the word probability curves to be linear

functions of the natural logarithm of word probability. Our estimate of R0 is −1 times

the sum of the resulting slopes.

2.2.2 Results

The total, unique effect of probability on reading time is shown in Figure 2.3.

By ‘total’ we mean that these graphs show the total slowdown across the entire spillover

region; this is the quantity to which our theory’s predictions apply. By ‘unique’ we

mean that these are corrected for the potential confounds detailed above. As predicted,

the relationship between probability and reading time was found to be logarithmic over
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Figure 2.3: As predicted, the relationship between reading time and probability is ap-
proximately logarithmic. This relationship holds over at least six orders of magnitude.
(Lower probability items occur, but in insufficient quantity to allow stable estimation
— see Appendix 2.C. Lower panels show the amount of data available at each level of
probability.) Curves are penalized splines with point-wise 95% confidence intervals,
showing the total unique contribution of probability to reading time in first-pass gaze
durations from the Dundee eye-tracking corpus (a) and self-paced reading times on a
portion of the Brown corpus (b). By convention, we measure the effect of probability
against the notional baseline of a perfectly predictable word. Confidence intervals do not
include the uncertainty induced by measurement error in probability estimation. Note
the general agreement on R0 (curve slope) as measured by distinct methodologies.
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the full usable range of our data, covering approximately six orders of magnitude, in

both data sets.

To verify that this relationship also holds within individual participants, we re-

peated this analysis for each individual participant in the eye-tracking data. (The self-

paced reading data contain insufficient observations per participant to allow such anal-

ysis.) As shown in Figure 2.4, the logarithmic effect is seen in at least 9 out of 10

participants.

This analysis also allows us to recover the time course of the predictability effect

across the spillover region, as shown in Figure 2.5.

2.2.3 Discussion

We find these results very promising for our model. But before we can conclude

much from them, we must consider alternate explanations for this logarithmic effect,

and there are two that have previously been proposed in the literature. Neither, we argue

here, provides a convincing account.

Relative entropy

Levy (2008) has argued that the goal of a comprehender is to build an internal

model of their linguistic input — including the words, but more importantly, how they

fit together and what they mean — in whatever representation the brain uses for such

things. Furthermore, though the comprehender does not have enough information to

uniquely pick out such a representation until the end of utterance (and possibly not

even then), they would like to process words incrementally. A natural, mechanism-

neutral way to represent the result of such incremental processing is as a probability

distribution over whole-utterance representations. This probability distribution must be

updated as each word arrives. Levy proposes that words which trigger ‘large’ changes in

this distribution require more effort to process than words which trigger ‘small’ changes,

and that Kullback-Leibler (KL) divergence be used to measure the size of such a change;

in this theory, processing time for a word is assumed to be linearly proportional to the

KL-divergence between old and new distributions. It turns out that this quantity equals

the negative log-probability of that word (its surprisal).
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Figure 2.4: To visualize inter-individual variation, we break down the Dundee corpus
data by participants and analyze each separately, shown here. Participant codes from the
corpus are shown in the upper right of each panel. Dashed lines represent point-wise
95% confidence intervals. The variation in ‘wiggliness’ of the main curves results in
part from noise and numerical instability in mgcv’s GCV-based penalization selection
(Wood, 2004) allowing over-fitting in some cases (or possibly under-fitting in the case
of participant ‘sf’) — see also Appendix 2.D. Despite this, 9 out of 10 participants show
effects of log-probability with an overall linear trend, while no effect was found for
participant ‘sg’.
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Figure 2.5: The same model fits shown in Figure 2.3, but showing the individual effects
of the probability of word n on reading time measured at word n and on successive
words (the spill-over region). Curves shown in Figure 2.3 were produced by summing
the curves shown here. Dashed lines represent point-wise 95% confidence intervals. (a)
First-pass gaze durations. (b) Self-paced reading times.
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While this theory may well have merit as a conceptual model and motivation

for future psycholinguistic work, our focus here is specifically on the striking empirical

regularity of the predictability effect, and as an explanation of that regularity we believe

this theory raises as many questions as it answers. To explain why predictability is mea-

sured in specifically log units rather than something else, it points out that this is the

same as measuring the distance between certain probability distributions in specifically

KL-divergence units, thus reducing one unexplained phenomena to another. Further-

more, it is unclear why an update that is larger in numerical magnitude should require a

longer processing time.

Of course, the theory we propose based on rational resource allocation and in-

cremental processing itself makes simplifying assumptions that might open it to similar

criticism. But we believe that an explanation that explains aspects of linguistic behavior

as arising, ultimately, from evolutionary fitness — and that also explains a pattern of be-

havior observed in many domains besides language — is fundamentally more satisfying

than one which explains it only in terms of other theory-internal constructs.

The Bayesian Reader

Norris (2006, 2009) has proposed a model of word recognition as optimal per-

ceptual discrimination: the Bayesian Reader. While the initial focus of Norris’s work is

on explaining results in isolated word recognition, the essential theory applies equally

well to the reading of continuous text.

The Bayesian Reader is a rational model that uses the second strategy we ref-

erenced above; that is, it explains differences in reading times between words as being

unrelated to cognitive processing, and instead as arising solely from sensory noise in

the visual system. If the retina and visual system were able to exactly measure the light

entering the eye, then a mere instant would suffice to recognize any word — but real

sensory information contains noise. This noise can be reduced by taking multiple sam-

ples and combining them according to Bayesian principles: the posterior belief in the

current word’s identity is its prior probability of occurrence multiplied by the bottom-up

likelihood of that word having produced each of the observed samples. This means that

at any given level of desired accuracy, words with lower prior probability require more
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samples to recognize, and as acquiring each sample requires the eyes stay fixed on the

word for some time, words with lower probability will receive longer viewing times.

The predictability effect thus arises naturally from the constraints of the visual system

combined with principles of optimal Bayesian reasoning.

In fact, with no further assumptions, the model predicts a specifically logarithmic

relationship between viewing time and prior probability. Intuitively, as each new sample

arrives, the comprehender’s posterior belief is updated by multiplying the old belief

by the new sample’s likelihood – or in log-space, by adding the new sample’s log-

likelihood. While samples are corrupted by stochastic noise, on average each sample

contains about the same amount of information and has about the same likelihood, so on

average, each sample increments the log-posterior by about the same amount. Therefore,

if the log-posterior starts out at distance d from the recognition threshold, and each

sample increments it by s on average, then threshold will be reached after about d/s

samples. So viewing time is linearly proportional to d. But d is just the difference

between the log-threshold and the log-prior, and accurate recognition requires a belief

threshold of near one, which means the log-threshold is approximately zero. Thus d is,

essentially, the negative log-prior, and viewing time is proportional to it.

This is an elegant model that accurately predicts several subtle results in isolated

word recognition, particularly those involving task demands and the influence of visual

neighbors (Pollatsek, Perea, & Binder, 1999), and we certainly believe that handling

sensory uncertainty is an important component of language comprehension. However,

it does not seem able to explain the results presented here.

Critically, in the Bayesian Reader, delay is caused by the visual system waiting to

acquire new visual data; therefore, differential effects of probability should only occur

at moments when the word is actually visible. The self-paced reading paradigm thus

provides a useful test, because in this paradigm each word disappears from the screen

as the next is shown. The optimal perceptual discrimination approach predicts that each

viewing time should be affected only by the current word’s predictability — there should

be no spillover effects on the viewing time for following words. Yet, in our self-paced

reading data (Figure 2.5b), almost all of the predictability effect appears on the following

words; in fact, it isn’t clear that predictability affects viewing time for the current word
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at all. This is also compatible with results from the disappearing text paradigm used

in eye-tracking, which show that even quite short fixations during ordinary reading are

substantially longer than required to accumulate sufficient visual information to identify

arbitrary words (Rayner, Liversedge, White, & Vergilino-Perez, 2003). It’s unclear,

therefore, why it would ever be necessary to alter the length of a fixation to acquire more

visual information. Put together, these results suggest that the modulation of viewing

durations predicted by optimal perceptual discrimination theory is unlikely to play more

than a minor role in explaining the predictability effect observed for reading times.

2.3 Conclusion

Within psycholinguistics, our empirical result has important methodological im-

plications for the interpretation of psycholinguistic data, since this ubiquitous reading-

time effect turns out to be strongest and most variable for exactly those items whose

conditional probability is too low to reliably measure or control by conventional means.

Of more theoretical interest, the predictability effect’s scale-free form also suggests that

the various predictive processes which might be assumed to operate at the different lev-

els of linguistic analysis — semantic/pragmatic, grammatical, lexical, and sublexical —

produce effects which are interchangeable and indistinguishable.

More generally, our model predicts that these effects should take an similar log-

arithmic form for any domain in which an organism is highly skilled at incrementally

processing sequentially accruing input. In other domains, we cannot make such de-

tailed predictions without first deriving the appropriate relationship between resource

investment and processing speed T (r), and possibly extending the model to include

other task-specific costs and benefits. But even in such cases, the model predicts the

qualitative processing time advantage consistently observed for predictable events, and

explains it as arising from a neural system capable of rationally tuning itself for greater

processing speed via mechanisms which, crucially, both consume resources and are

themselves somewhat slow.
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2.A Derivation: Monotonicity of processing time

We claim that if T (r) is a differentiable, strictly convex and monotonic decreas-

ing function of r, then the rational processing time implied by Equations 2.1 and 2.2:

t∗i = T

((
T ′
)−1( −1

P (A = i|context)

))

is a monotonic decreasing function of P (A = i|context).

Proof: The derivative of a strictly convex function is a monotonic increasing

function, and the inverse of a monotonic increasing function is also a monotonic in-

creasing function. Therefore (T ′)−1(x) is a monotonic increasing function of x.

It is also clear that −1/P (A = i|context) is a monotonic increasing function of

P (A = i|context).

The composition of two monotonic increasing functions is also monotonic in-

creasing; therefore

(T ′)−1
(

−1

P (A = i|context)

)
is a monotonic increasing function of P (A = i|context).

And finally, we know by assumption that T (r) itself is monotonic decreasing.
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Since the composition of a monotonic decreasing function with a monotonic increasing

function is monotonic decreasing, we have that

T

((
T ′
)−1( −1

P (A = i|context)

))

is monotonic decreasing. �

2.B Derivation: T (r) for logarithmic processing times

We wish to show that if

t∗i = T

((
T ′
)−1( −1

P (i|context)

))
= −R0 logP (i|context) (2.4)

then this implies that

T (r) = R0 log
R0

r
.

However, the algebra turns out to be easier if we rewrite the problem in another

form. Let R(t) be the quantity of resources required to achieve a processing time of t.

(Note that R(t) = T−1(t).) Our strategy will be to re-state our original optimization

problem in terms of R(t), and use this to re-derive Equation 2.4 in a new (and, it will

turn out, simpler) form. We then solve this new equation to find an explicit formula for

R′(t), the derivative of R(t) with respect to t, integrate it to find an explicit formula for

R(t), and then solve for T (r).

First, we rewrite our original optimization problem into a formally equivalent

problem: one where instead of selecting the quantity of resources r1, . . . , rn that we

wish to spend, we select the processing times t1 = T (r1), . . . , tn = T (rn) that we wish

to achieve:

C(t1, . . . , tn) =
n∑
i=1

[
P (A = i|context)ti +R(ti)

]
.
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Finding the t∗i which minimize this, we have

∂C(t1, . . . , tn)

∂ti
= P (A = i|context) +R ′(t∗i ) = 0

R ′(t∗i ) = −P (A = i|context)

t∗i = (R ′)−1
(
−P (A = i|context)

)
.

This shows that we can rewrite our premise above as

t∗i = (R ′)−1
(
−P (A = i|context)

)
= −R0 logP (A = i|context).

We wish to solve for R(t). Applying R′ to both sides gives

−P (A = i|context) = R ′
(
−R0 logP (i|context)

)
.

Now set t = −R0 logP (i|context), which implies that P (A = i|context) =

exp(−t/R0). Substituting, we find

−e−t/R0 = R ′(t)

and integrating both sides with respect to t gives

R(t) = R0e
−t/R0 .

But we want T (r), which is the inverse of R(t). So to find the inverse, we replace R(t)

with r and t with T (r), and solve for T (r) in

r = R0e
−T (r)/R0

which gives

r

R0

= e−T (r)/R0

log
r

R0

=
−T (r)

R0
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Figure 2.6: Here we reproduce Figure 2.3, but extending the x-axis to show the full
range of probabilities. Data sparsity below about 10−7 (for gaze duration data, a) and
about 10−6 (for self-paced reading data, b) cause a dramatic increase in the size of the
confidence intervals, to the point that that very little can be said about the shape of the
curve in this region. While our prediction of a straight line fit is compatible with the
data, many other curves are as well.

T (r) = −R0 log
r

R0

= R0 log
R0

r
.

And this is the statement we wished to prove. �

2.C Estimates for low probability words

Our figures in the main text do not show curve estimates for probabilities below

10−6; Figures 2.6 and 2.7 demonstrate why.
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Figure 2.7: For completeness, we also show the individual word breakdowns across the
full range of the data. (a) First-pass gaze durations. (a) Self-paced reading times.



33

2.D Validity of penalized spline regression

Penalized spline regression as implemented by mgcv (Wood, 2006, 2004) is a

powerful and principled technique for estimating unknown non-linear relations. In order

to fit nearly-arbitrary smooth curves, it uses a high-dimensional spline basis; in order

to avoid the over-fitting that otherwise plagues high-dimensional models, it combines

the standard maximum likelihood criterion with a curvature penalty term that biases

the regression towards less ‘wiggly’ curves. Critically, the relative weight placed on

the likelihood term (which attempts to follow the data) versus the penalty term (which

attempts to make the line smoother and closer to a straight line) is determined by cross-

validation. In theory, therefore, this method’s fitted curves should be biased towards

smoothness only to the extent that this helps it better match the true curve describing the

underlying phenomenon.

But since our key empirical finding is that such a fit produces a straight line, it

seems wise to verify that this is not an artifact introduced by penalization. We therefore

repeated our analysis, but using two different methods to remove this potential bias.

First, we ran the same model fits, but entering raw probability in place of log-

probability; in this case we predict that the splines should attempt to form a steep log-

arithmic curve (since we believe that is the true underlying relationship), while the pe-

nalization pushes towards a straight line. As expected, mgcv’s algorithm chose to apply

very small penalization weights (ranging from 65 to 64000 times smaller than the cor-

responding weights chosen in the original analyses), which in turn allowed the resulting

spline fit to form an highly-nonlinear, approximately logarithmic curve with substantial

local variation around this underlying trend (Figure 2.8b; note that while the fit was

performed using raw probability, we plot the result against log probability to facilitate

comparison with other fits). Second, we fit our original model, but with penalization

simply disabled; this produced similar results (Figure 2.8c). The three models thus

agree that the underlying relationship is approximately logarithmic; next we would like

to confirm that the local non-linear deviations from this trend that we see in models (b)

and (c) are the result of over-fitting rather than a true effect. We verified this by perform-

ing 1000-fold cross-validation on all three models and both data sets, and found that in

all cases, the original penalized model (Figure 2.8a) achieved a higher log-likelihood
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Figure 2.8: The effect of penalization in controlling over-fitting. (a) Our original, pe-
nalized model (a repeat of Figure 2.3). (b) The same model as in a, but fit with raw
probability entered instead of log probability, then plotted in log-space. (c) The same
model as in a, but fit without penalization. Upper panels show first-pass gaze durations;
lower panels show self-paced reading times. That the lower panels show more wiggli-
ness than the upper ones is presumably due to the relative sizes of the two data sets; in
the absence of penalization, the smaller data set allows more overfitting than the larger.
Dashed lines denote point-wise 95% confidence intervals.
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than the other models on held-out data. Thus we conclude that, to the limits of our

data, the underlying relationship between word probability and processing time is in

fact logarithmic.

References
Anderson, J. R. (Ed.). (1990). The adaptive character of thought. Hillsdale, New Jersey:

Lawrence Erlbaum Associates.

Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah,
New Jersey: Lawrence Erlbaum Associates.

Anderson, J. R., & Milson, R. (1989). Human memory: An adaptive perspective.
Psychological Review, 96, 703–719.

Atkinson, K. (2004). The VARCON database, version 4.1. Retrieved from http://
wordlist.sourceforge.net/

BNC Consortium. (2001). The British National Corpus (version 2, BNC World) [Text
corpus]. Retrieved from http://www.natcorp.ox.ac.uk/

Carpenter, R. H. S., & Williams, M. L. L. (1995). Neural computation of log likelihood
in control of saccadic eye movements. Nature, 377(6544), 59–62.

Catania, K. C., & Remple, F. E. (2005). Asymptotic prey profitability drives star-nosed
moles to the foraging speed limit. Nature, 433(7025), 519–522.

Chen, S. F., & Goodman, J. (1998). An empirical study of smoothing techniques for lan-
guage modeling (Technical Report No. TR-10-98). Cambridge, MA: Computer
Science Group, Harvard University. Retrieved from ftp://ftp.deas.harvard.edu/
techreports/tr-10-98.ps.gz

Demberg, V., & Keller, F. (2008). Data from eye-tracking corpora as evidence for
theories of syntactic processing complexity. Cognition, 109(2), 193–210.

Ehrlich, S. F., & Rayner, K. (1981). Contextual effects on word perception and eye
movements during reading. Journal of Verbal Learning and Verbal Behavior,
20(6), 641–655.

http://wordlist.sourceforge.net/
http://wordlist.sourceforge.net/
http://www.natcorp.ox.ac.uk/
ftp://ftp.deas.harvard.edu/techreports/tr-10-98.ps.gz
ftp://ftp.deas.harvard.edu/techreports/tr-10-98.ps.gz


36

Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information
in a statistically optimal fashion. Nature, 415(6870), 429–433.

Frank, S. L., & Bod, R. (2011). Insensitivity of the human sentence-processing system
to hierarchical structure. Psychological Science, 22(6), 829–834.

Frisson, S., Rayner, K., & Pickering, M. J. (2005). Effects of contextual predictability
and transitional probability on eye movements during reading. Journal of Exper-
imental Psychology: Learning, Memory, and Cognition, 31(5), 862–877.

Froehlich, A. L., Herbranson, W. T., Loper, J. D., Wood, D. M., & Shimp, C. P. (2004).
Anticipating by pigeons depends on local statistical information in a serial re-
sponse time task. Journal of Experimental Psychology: General, 133(1), 3145.

Goodman, J. T. (2001). A bit of progress in language modeling, extended version
(Technical Report No. MSR-TR-2001-72). Redmond, WA: Microsoft Research.

Hale, J. (2001). A probabilistic Earley parser as a psycholinguistic model. In Proceed-
ings of NAACL-2001 (pp. 159–166). Stroudsburg, PA: Association for Computa-
tional Linguistics.

Harris, C. M., & Wolpert, D. M. (1998). Signal-dependent noise determines motor
planning. Nature, 394, 780–784.

Janssen, P., & Shadlen, M. N. (2005). A representation of the hazard rate of elapsed
time in macaque area LIP. Nature Neuroscience, 8(2), 234–241.

Just, M. A., Carpenter, P. A., & Woolley, J. D. (1982). Paradigms and processes in
reading comprehension. Journal of Experimental Psychology: General, 111(2),
228–238.

Kennedy, A., Hill, R., & Pynte, J. (2003). The Dundee corpus. In Proceedings of the
12th European conference on eye movement.

Kliegl, R. (2007). Toward a perceptual-span theory of distributed processing in reading:
A reply to Rayner, Pollatsek, Drieghe, Slattery, and Reichle (2007). Journal of
Experimental Psychology: General, 136(3), 530–537.

Kliegl, R., Nuthmann, A., & Engbert, R. (2006). Tracking the mind during reading:



37

The influence of past, present, and future words on fixation durations. Journal of
Experimental Psychology: General, 135(1), 1235.

Kneser, R., & Ney, H. (1995). Improved backing-off for M-gram language modeling.
In Proc. ICASSP (pp. 181–184).

Knill, D. C., & Richards, W. (Eds.). (1996). Perception as Bayesian inference. Cam-
bridge: Cambridge University Press.

Laming, D. R. J. (1968). Information theory of choice-reaction times. London: Aca-
demic Press.

Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106, 1126–
1177.

Marslen-Wilson, W. D. (1975). Sentence perception as an interactive parallel process.
Science, 189(4198), 226–228.

McDonald, S. A., & Shillcock, R. C. (2003a). Eye movements reveal the online com-
putation of lexical probabilities during reading. Psychological Science, 14(6),
648–652.

McDonald, S. A., & Shillcock, R. C. (2003b). Low-level predictive inference in reading:
The influence of transitional probabilities on eye movements. Vision Research, 43,
1735–1751.

Mitchell, D. C. (1984). An evaluation of subject-paced reading tasks and other methods
for investigating immediate processes in reading. In D. E. Kieras & M. A. Just
(Eds.), New methods in reading comprehension research. Hillsdale, New Jersey:
Lawrence Erlbaum Associates.

Norris, D. (2006). The Bayesian reader: Explaining word recognition as an optimal
Bayesian decision process. Psychological Review, 113(2), 327–357.

Norris, D. (2009). Putting it all together: A unified account of word recognition and
reaction-time distributions. Psychological Review, 116(1), 207–219.

Oaksford, M., & Chater, N. (1994). A rational analysis of the selection task as optimal
data selection. Psychological Review, 101, 608–631.



38

Oaksford, M., & Chater, N. (Eds.). (1998). Rational models of cognition. Oxford:
Oxford University Press.

Pang, K., Merkel, F., Egeth, H., & Olton, D. S. (1992). Expectancy and stimulus
frequency: a comparative analysis in rats and humans. Perception and Psy-
chophysics, 51(6), 607–615.

Pollatsek, A., Perea, M., & Binder, K. S. (1999). The effects of ”neighborhood size”
in reading and lexical decision. Journal of Experimental Psychology: Human
Perception and Performance, 25(4), 1142–1158.

Rayner, K. (1998). Eye movements in reading and information processing: 20 years of
research. Psychological bulletin, 124(3), 372–422.

Rayner, K., Liversedge, S. P., White, S. J., & Vergilino-Perez, D. (2003). Reading
disappearing text. Psychological Science, 14(4), 385–388.

Rayner, K., & Well, A. D. (1996). Effects of contextual constraint on eye movements in
reading: A further examination. Psychonomic Bulletin & Review, 3(4), 504–509.

Stolcke, A. (2002). SRILM — an extensible language modeling toolkit. In Proc. intl.
conf. on spoken language processing (Vol. 2, pp. 901–904). Denver.

Stone, M. (1960). Models for choice-reaction time. Psychometrika, 25, 251–260.

Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., & Sedivy, J. C. (1995). In-
tegration of visual and linguistic information in spoken language comprehension.
Science, 268, 1632–1634.

Taylor, W. L. (1953). “Cloze procedure”: A new tool for measuring readability. Jour-
nalism Quarterly, 30, 415–433.

Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience,
7(9), 907–915.

Wood, S. N. (2004). Stable and efficient multiple smoothing parameter estimation for
generalized additive models. Journal of the American Statistical Association, 99,
673–686.



39

Wood, S. N. (2006). Generalized additive models: An introduction with R. Boca Raton:
Chapman and Hall/CRC.



Chapter 3

Cloze but no cigar: The complex

relationship between cloze, corpus, and

subjective probabilities in language

processing

One conclusion suggested by the previous chapter’s results is that the brain

doesn’t just have a general sense of some words being more probable than others; its

model of the probabilistic structure of language is fine-grained and quantitative. But

how are these fine-grained predictions made? In our analyses, we used a computer

model trained on a large text corpus using state-of-the-art algorithms. The resulting tri-

gram model is able to exploit a full two words of context when making predictions —

at least, most of the time. Sometimes it uses less. The only way it can use more is that

it knows that words which have been mentioned earlier in the document are generally

more likely to occur again, which is pretty weak compared to what we usually think of

as “using context”. Of course, there exist computer models that can use more context

and in less rigid ways (Elman, 1990), but the fundamental limitation here is not that

there’s anything wrong with our model — the reason we used this model is that there

simply wasn’t enough information in our corpus to do much better. If our language has

50,000 words (in fact it has more), then our trigram model has 50,0003 = 1.25 × 1014

40
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parameters to estimate, and our corpus only has 108 words to estimate them from. For-

tunately most of these parameters turn out not to matter (we rarely need to know the the

probability of the word averting occuring after the phrase billows redheads), but even

so, much of the art of building statistical language models is in choosing good ways to

invent the probabilities that we can’t actually measure.

In contrast with our trigram model, there’s a rich tradition of research showing

that the brain is able to efficiently exploit a wide variety of contextual cues, including

such factors as lexical statistics, syntactic structure, real-world plausibility, the immedi-

ate physical and social environment, etc. (e.g., Bicknell, Elman, Hare, McRae, & Kutas,

2010; Hanna & Tanenhaus, 2004; Kamide, Altmann, & Haywood, 2003; Tanenhaus,

Spivey-Knowlton, Eberhard, & Sedivy, 1995). Yet the typical experimental participant

has on the same order of magnitude of linguistic exposure as our computer models do

(e.g., this has been estimated at no more than 3.5 × 108 words for the average college

student, Levy, Fedorenko, Breen, & Gibson, 2010). So there’s an apparent contradiction

here: the brain seems to be making these fine-grained, quantitative predictions, while

exploiting large amounts of context, but it seems like it doesn’t have enough informa-

tion for this to be possible (Chomsky, 1980; Yarlett, 2008). Certainly part of the answer

is that the brain is also exploiting various forms of non-linguistic knowledge, but it’s

not clear that these are able to provide the orders of magnitude more data that would be

needed in order to make quantitatively accurate predictions in many ordinary situations.

More likely, the brain is also finding good ways to invent probabilities in situations

where they can’t be measured. And we would like to know how it does this.

Figure 3.1 summarizes the relationship between the various concepts in play

here. Out of all the language usage in the world (a), an individual experiences some

subset (b). These experiences serve as the input to a learning process (b→c), which

produces whatever internal representations of their language that their brain carries with

it (c). The primary motivation for the research referenced above was to test how much

of this knowledge is then available for efficient, online use (d).

Here, we instead focus on the knowledge itself (c), and the biases that make it

possible to learn. While there’s a great deal of work on the language learning process

(b→c), the majority has focused on how children acquire their language’s basic patterns
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Figure 3.1: An informal illustration of the situation faced by those who wish to study
linguistic prediction. Arrows indicate processes. Language is actually used in some
particular ways in the real world (a); some subset of these uses are sampled by corpora
(f), and may be used to train computational language models (g). A different subset
(b) is encountered by each human language user, who uses these experiences to create
some internal model of the statistics of their language (c). They then draw on this
internal model to make predictions during online linguistic comprehension (d) and also,
presumably, when responding in the cloze task (e). But the actual relationship between
the items on the left side of the diagram remains obscure — do cloze completions match
online predictions? Do online predictions match real-world statistics?

— how words are segmented, how tense is expressed, etc. In contrast, we focus on

knowledge of fine-grained statistical patterns in language: it’s one thing to know your

language’s tenses, but quite another to know exactly how often each of those tenses is

used with each possible verb in each possible sentence frame.

To do this, we need some way to measure speaker’s subjective probabilities, and

we need some way to measure the ‘real world’ probabilities, so we can see how they

compare; any systematic differences would then give us evidence for how the brain gen-
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eralizes from its experience to new contexts. For the subjective probabilities, the most

ecologically valid approach would be to somehow extract them from naturalistic online

measures such as reading times. Unfortunately, these measures are extremely noisy.

This isn’t a big problem when trying to pick out overall patterns as in the last chapter,

but it makes it infeasible to use them for measuring participant’s subjective probabilities

in any kind of more fine-grained way. Instead, we use the cloze task (Taylor, 1953) to

elicit subjective probabilities (e).

The cloze task consists of presenting a large group of participants with sentence

stems like In the winter and , and asking each to fill in the blank with some

plausible continuation — “whatever comes to mind”. Some might write spring, others

summer, and so on. We then count up what proportion of participants responded with

each word; this proportion is called the cloze probability of that word in that context.

This task is ubiquitous in studies which wish to measure the predictability of various

stimuli items, and is generally taken to measure subjective probabilities, though we

actually know very little about how the offline and somewhat artificial nature of the task

might affect responses. In previous work, Ong (2007) has attempted to predict cloze

values based on computational models, but this was intended as a kind of labor-saving

measure to avoid the expense of running cloze norms; we are interested in the cloze task

in its own right.

As for the real world probabilities, we again cannot measure these directly; how-

ever, we can do better than the language models (g) that we used in the previous chapter.

The Web 1T five-gram corpus (Brants & Franz, 2006) has recently become available;

it counts the occurence of many five-word phrases in one trillion words of English web

text. Because it is so large, it allows us to directly measure the probability of continu-

ations for many four-word sentence stems (like In the winter and), by simply counting

how often each continuation occurs and dividing by the number of times that the stem

occured.

In this study, therefore, we selected four-word sentence-initial phrases from the

Web 1T corpus, and ran each of them in the cloze task. If the following all hold:

1. The corpus accurately represents participant’s language experience (i.e., the a→b

and a→f sampling processes are similar)
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2. Participants have accurate and complete internal models of their language input

(i.e., b→c is veridical, and uninfluenced by learning biases)

3. When presented with isolated, out-of-context sentences, their subjective proba-

bilities are based on accurately sampling from or marginalizing over the contexts

implied by that sentence (e.g., if a sentence stem is one that rarely occurs out-

side of political news coverage, they recognize this and incorporate it into their

predictions).

4. Cloze accurately measures subjective probabilities (i.e., the process c→e which

generates cloze responses is simple probability matching)

then we expect that the cloze probabilities and the corpus probabilities will be iden-

tical, modulo noise. On the other hand, any differences that we do find must arise

from violations of these assumptions. Violations of the first and last assumptions have

methodological consequences for those relying on corpus or cloze data, respectively. Vi-

olations of the third assumption have methodological consequences for all of us who use

isolated, out-of-context sentences in our experiemnts, and would give clues as to how

people handle such stimuli. And most importantly, violations of the second assumption

can give as information on how the brain learns and/or represents language statistics.

3.1 Experiment 1

3.1.1 Methods

Materials

We selected 300 four-word sentence initial stems from the Web 1T 5-gram cor-

pus (Brants & Franz, 2006), which was compiled from one trillion words of English

web text. (By ‘stem’ we mean nothing more or less than four words which begin a

sentence.) The messy nature of this corpus required a complex selection procedure; we

summarize the most important points: Our stems were required to have occurred often

enough to allow reasonable probability estimates (median count 1906, minimum count

250), to meet a minimum perplexity threshold according to a separate trigram model
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trained on the British National Corpus (The British National Corpus, version 3 (BNC

XML Edition), 2007), to induce mostly open-class word continuations (≥ 90%), and

to vary substantially in the range of probability for their most-likely and second-most-

likely continuations. They were then screened by hand to eliminate obvious spam (any

phrase used in a spam web page is produced by one person once and then duplicated all

over the web, which causes it to be counted many times, as if it were in fact a commonly

produced phrase), high-frequency stereotyped phrases (e.g., Designated trademarks and

brands. . . ), excessively technical usages that we judged participants were unlikely to

have had much experience with (The study protocol was. . . ), or web-specific usages (on

the web, If you leave the. . . is usually followed by . . . field blank. . . , because web pages

are very concerned about explaining web forms). Finally, whenever two stems were

judged ‘too similar’ to each other (e.g., because they differed from each other only in

the gender of pronouns), one of them was eliminated.

Procedure

Participants performed a computerized sentence continuation (cloze) task, in

which they were given each stem and asked to type one or more words which naturally

continued the sentence. Spelling was corrected by hand, with computer assistance.

Participants

140 students from UC San Diego participated for course credit. All were native

English speakers. 114 participated via an online web form; of these, 6 were eliminated

for admitting in a post-test questionnaire that they had used Google to find continua-

tions. The remaining 26 participants performed the identical task in a lab environment.

Because analyses (not shown) found no difference between the online and in-person

groups, we pool their data.

3.1.2 Results and Discussion

As the online and in-person participant groups performed similarly in all analy-

ses reported here, we present only pooled data (N = 134).
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Table 3.1: Sample continuation distributions from Experiment 1. In each case, the left
column is web corpus probability, and the right column is measured cloze probability.
‘—’ denotes continuations that were never observed.

He played a key. . .
role 94% 42%
part 2.3% 3.8%

When she began to. . .
speak 5.2% 9.0%

cry 2.5% 19%
work 2.2% 1.5%

It usually takes the. . .
form 34% 1.5%

shape 23% —
following 2.7% —

cake — 8.3%

After a cup of. . .
coffee 39.6% 28%

tea 39.1% 61%
hot 3.0% —

The time needed to. . .
complete 41% 6.7%

reply 3.2% —
finish 0.3% 10%

In the winter and. . .
spring 66% 40%

early 13% —
summer 4.2% 32%

fall 2.3% 19%

When we started this project, the Web 1T corpus was the only corpus available

that was large enough for our purposes, and so it was used to optimize the design of

both this and the next experiment. However, a second large corpus has recently become

available, derived from scanned books rather than the raw web (Michel et al., 2011;

we use the subset containing American English since 1960, consisting of ∼89 billion

words). This corpus seems more representative of real usage (i.e., it has no spam), but

is smaller and our experimental design is not optimized to take full advantage of it;

therefore, we perform all analyses with both corpora.

Fig. 3.2 shows the overall relationship between cloze probability and corpus

probability; our first result is that their correlation is only moderate. So the next question

is, if corpus probability does not determine cloze, then what does?

To find out, we used regression analysis to predict cloze probabilities given cor-

pus probability and other predictors. Since we are trying to predict probability values

which are necessarily bounded and normalized, standard gaussian least-squares regres-

sion is inappropriate. Instead, we fit cloze responses to a modified log-linear model of

the form

P (responseij|stemi) =
1

Zi
× p(β0+β1center(StemProp1i)+··· )

ij
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Figure 3.2: Cloze versus corpus probability. Each point represents a single
stem/continuation pair that appeared in the corpus and was given by at least one cloze
participant. (Regression analyses included responses that were given by zero partic-
ipants, but they can’t be shown on this log scale.) Correlations are computed in log
space. Red crosses mark stem/continuation pairs that were selected for use as stimuli
Experiment 2.

× exp(γ1WordProp1j + · · · )

Here, pij indicates the probability of continuation j given stem i computed from the

corpus. Because we were interested in how people used context, however, we did not

simply enter the raw corpus probability; instead, we defined pij as a weighted average

of the five-gram, four-gram, trigram, and bigram probabilities from the corpus, with the

weights chosen as part of the fitting process:

pij =
4∑

k=1

αkPcorpus(wordij|Last k words of stemi)

4∑
k=1

αk = 1.

Thus, the model is allowed to use the full context, or, alternatively, to use less than that,

depending on which best explains the data. αk can be interpreted as the proportion of
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the time that participants chose to attend to k words of context when producing their

response. β0 is a free parameter that measures the baseline sensitivity of cloze to corpus

probability. An β0 of 0 would indicate no sensitivity, and a value of 1 would indicate that

cloze matches corpus probability perfectly (at least, until the word-specific parameters

come in to further influence matters). A value between 0 and 1 would indicate that cloze

distributions are overall flatter (have higher entropy) than the corresponding corpus dis-

tribution, while a value greater than 1 would indicate that cloze distributions are more

peaked (have lower entropy), as might happen if participants preferred to provide the

most-probable continuation instead of probability matching. StemProp1, . . . are prop-

erties of the stem which might modulate the overall effect of β0. WordProp1, . . . are

word properties that might cause participants to use particular words more or less of-

ten than predicted by corpus probability alone. And Zi is a normalizing constant (not

a free parameter). This normalization is the reason we chose a log-linear model over

more common forms of regression — it enforces the idea that different continuations

for the same stem must compete for responses; if one becomes more popular, it is at the

expense of others.

Stem predictors included the corpus constraint (defined as the probability of a

stem’s most-probable continuation, maxi P (continuationi|stem)), and the total number

of times that the stem was observed in the corpus (a proxy for participants likely amount

of experience with each particular stem). Word predictors included familiarity, concrete-

ness, imageability, and age of acquisition (from Wilson, 1988; Stadthagen-Gonzalez &

Davis, 2006; Nelson, McEvoy, & Schreiber, 1998), word frequency and contextual di-

versity (from Brysbaert & New, 2009), word length, and a measure of interlexical prim-

ing from the stem to the target (‘lexical prime probability’). This measure was computed

by looking up the probability pi that each word i in the stem would produce the contin-

uation as a response in a free-association task (Nelson et al., 1998), and then combining

these probabilities as 1−
∏

i(1−pi). This implements the idea that each of the words in

the stem has an independent chance of priming the continuation word, and so the overall

probability of its being primed is the probability that at least one stem word primes it.

Finally, we entered a factor indicating whether each participant had produced the given

continuation word in a previous trial within the experiment, i.e., their response was a
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Table 3.2: Estimated coefficients from a (modified) log-linear model regressing cloze
responses against corpus probability and other measures. Shaded cells are significant.
Positive/green cells indicate a response preference, while negative/red cells indicate a
response dispreference; e.g., cloze participants use familiar words more than would be
expected given corpus probability but may avoid long words. Not much should be read
into the absolute magnitude of coefficients, since different predictors are on different
scales.

Web Books

Corpus probability from
all context 3% 11%
3 words context 97% 74%
2 words context 0% 15%
1 word context 0% 0%

is raised to some power
Baseline 0.88 0.88
Corpus constraint (log10) −0.41 −0.30
Stem frequency (log10) −0.26 0.21

then modulated by factors:
Familiarity 0.99 0.76
Concreteness 0.03 −0.01
Imageability 0.03 0.18
Age of acquisition 0.19 0.22
Frequency (SUBTLEX) −0.57 −0.36
Contextual diversity 1.34 0.69
Length −0.02 −0.11
Lexical prime probability 2.17 4.38
Used response before 0.57 0.56

repeat.

We analyzed the subset of the data for which all of these norming values were

available, for which the continuation was recorded in the corpus, and, in the book corpus

analysis, for which the stem occured at least 100 times in the corpus. (This allowed the

analysis of 5015 responses for the web data, and 4636 for the book data.) The model

was fit by maximum-likelihood, with all predictors entered simultaneously, and signifi-

cance computed with the likelihood ratio test and corrected for multiple comparisons by

sequential Bonferroni. The results of this analysis are shown in Table 3.2.

We start with the finding that the full corpus probability is not the best predictor
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of cloze probability; the probability based on only three words of context dominated in

both the web and books analyses. This is true despite the fact that for these stimuli,

we are able to accurately calculate the probability of continuations given all four words,

so this is not a simple matter of the full context 5-gram model being noisier than the

reduced context 4-gram model. It seems that participants overwhelmingly ignore the

first word of the prompt stem when producing their responses.

Reassuringly, though, the exponent β0 on this reduced-context corpus probabil-

ity is significantly greater than 0 (web: χ2(1) = 992, p � 0.001, books: χ2(1) =

784, p � 0.001), indicating that cloze is sensitive to corpus probability, as expected.

However, it is also significantly smaller than 1 (web: χ2(1) = 62, p � 0.001, books:

χ2(1) = 44, p � 0.001), indicating that to best explain the cloze distribution, we need

to systematically flatten out the corpus distributions. This may indicate that cloze distri-

butions are higher entropy than corpus distributions, and participants are more confused

about upcoming linguistic material than would be expected of an optimal rational agent

(compare Griffiths & Tenenbaum, 2006). However, it may be also be an artifact of the

regression technique we used — we would also expect this effect if participants have

a similar overall distribution as the corpus, but a different idea about which words are

high probability and which are low. Unfortunately, technical limitations of the corpus

data sets make it difficult to estimate the entropy of these distributions directly for com-

parison. In any case, this flattening is more pronounced for contexts that are particularly

constraining (web: χ2(1) = 36, p � 0.001, books: χ2(1) = 29, p � 0.001). It is

also affected by commonality of the stem. For high frequency stems in the web cor-

pus, we must flatten out the corpus distribution even more than otherwise in order to fit

the cloze distribution (χ2(1) = 54, p � 0.001); in the book corpus, we find the oppo-

site effect, with high frequency stems requiring less flattening to explain cloze values

(χ2(1) = 8.6, p < 0.005). This may indicate that on the web, high frequency phrases

are ones that are contaminated by spam and other distributional oddities, making their

corpus distributions particularly noisy, but in print, high frequency phrases are ones that

participants genuinely have more experience with, and that they are able to use this

experience to make better predictions.

For word properties, there is evidence that participants prefer to respond with
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words which are familiar, concrete, have high contextual diversity, and which are primed

by words in the stem (e.g., this may explain the winter and fall responses; in ordinary

usage people would usually choose to say fall and winter instead, which makes fall an

unlikely continuation according to the corpus; but in any case fall is somewhat primed

by winter). They may avoid words which are long — perhaps because they require

more effort to type — and also avoid words which are imageable or are acquired early

— perhaps because in the formal context of an experiment they attempt to use more

formal language. And, finally, they have a preference towards repeating themselves: if

a word has been used once, then participants are about exp(0.56) = 1.75 times more

likely to produce it again on future trials.

3.2 Experiment 2

Having established that cloze and corpus probability vary in substantial and sys-

tematic ways, our next question is whether to attribute these effects to biases in the cor-

pus sampling (Fig. 3.1, a→f), to biases in language acquisition and processing (b→c),

or to biases in cloze task performance (c→e). If these effects were caused by the cloze

task alone, then we would expect corpus probabilities to be more closely correlated with

online subjective probabilities than cloze probabilities are, and therefore corpus prob-

abilities should outperform cloze probabilities in explaining performance in an online

comprehension task. So in this experiment, we pit cloze probabilities against corpus

probabilities in explaining self-paced reading times.

3.2.1 Methods

Materials

Experiment 1 produced 2350 distinct stem-plus-continuation pairs for which we

had both cloze and corpus predictability measurements (the points in Figure 3.2). From

these we selected 179 four-word stems, then for each stem selected 2 target continu-

ations, producing a total of 358 five-word sentence beginnings (the red points in Fig-

ure 3.2). We then completed each sentence and divided them into two 179-sentence
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lists, so that no participant saw any stem or any target more than once. These stems and

target continuations were selected to maximize our ability to distinguish cloze and web

corpus probability according to a power analysis. No fillers were used. Several example

stimuli are shown below:

1. In the winter and (fall/summer) the little town would hold fairs to raise the com-

munity spirit.

2. When she began to (cry/sing) he overheard and wanted to know what (had hap-

pened / song it was).

3. But this was no (problem / reason) for that amazing team (that they hired / to be

fired).

Procedure

Participants read sentences in random order in a self-paced moving-window

paradigm (Just, Carpenter, & Woolley, 1982) with a comprehension question presented

after each sentence.

Participants

58 students students from UC San Diego participated for course credit. All were

monolingual English speakers.

3.2.2 Results and Discussion

Comprehension questions

All subjects performed significantly above chance on comprehension question

accuracy (minimum 77%, median 92%).

Reading times

We analyzed the total reading time for a region consisting of the target word plus

the following word (to capture spillover; see Fig. 3.3). After removing sentences with
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In the winter and fall the little town...

Target

Critical region

Context

Figure 3.3: Sample stimulus for Experiment 2.

incorrect comprehension question answers or outlier reading times in the critical region

(reading times <80 ms, >1500 ms, or >4 sd above participant-specific means, 1.7% of

data removed), reading times were entered into a multi-level mixed-effects regression

model using lme4 (Bates & Maechler, 2010). Our first question was whether cloze or

corpus probabilities better explained reading times, so both were log-transformed (see

previous chapter) and entered into the regression. In addition, for controls, we entered

the log-frequency (from Brysbaert & New, 2009), word length, log-frequency/word-

length interaction, and log-corpus probability for three different words: the word pre-

ceding the target, the target itself, and the word following the target. Because our stimuli

were not optimized to produce corpus estimates of the probability of the word following

the target, this probability was estimated using only a two-word context (i.e., an un-

smoothed trigram model). As random effects, we allowed the intercept to vary by stem,

and the intercept, slope of the cloze effect, and slope of the target word corpus probabil-

ity effect to vary by subject (this structure selected by model comparison). Significance

was assessed by assuming calculated t values were distributed as standard normal under

the null hypothesis (Baayen, Davidson, & Bates, 2008).

Results are shown in Tables 3.3 and 3.4. We found that cloze was significant after

controlling for corpus probability and the other factors described (web: t = −2.17, p <

0.03, books: t = −2.47, p < 0.02), but that after controlling for cloze and these other

factors, corpus probability was not significant, or its effect went the wrong way (web:

t = 1.37, n.s., books: t = 2.05, p < 0.04). This would suggest that at least some

of the biases we observe in cloze probability are also present in readers’ subjective

probabilities; the most substantial differences between cloze and corpus probabilities do

not arise from the artificiality of the cloze task.
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Table 3.3: Mixed-effects regression analysis of critical region reading times from ex-
periment 2, using web corpus.

β coef. SE(β) t p

Intercept 472.67 39.64 11.92 �0.01
Target word (fall):

Cloze probability (log10) −9.05 4.14 −2.19 0.03
Web probability (log10) 4.92 3.58 1.37 0.17
Frequency (log10) −11.14 6.97 −1.60 0.11
Length 6.90 4.92 1.40 0.16
Frequency × Length 0.40 1.09 0.37 0.71

Succeeding word (the):
Web probability (log10) −1.92 2.21 −0.87 0.39
Frequency (log10) 18.14 6.19 2.93 <0.01
Length −10.37 3.66 −2.84 <0.01
Frequency × Length −3.47 1.05 −3.32 <0.01

Previous word (and):
Web probability (log10) 0.59 3.00 0.20 0.85
Frequency (log10) 6.00 4.66 1.29 0.20
Length −6.02 3.75 −1.60 0.11
Frequency × Length −2.37 0.83 −2.85 <0.01

Table 3.4: Mixed-effects regression analysis of critical region reading times from ex-
periment 2, using books corpus.

β coef. SE(β) z p

Intercept 489.03 50.41 9.70 �0.01
Target word (fall):

Cloze probability (log10) −11.59 4.69 −2.47 0.01
Books probability (log10) 12.07 5.88 2.05 0.04
Frequency (log10) −10.72 9.77 −1.10 0.27
Length 7.38 6.42 1.15 0.25
Frequency × Length 0.49 1.49 0.33 0.74

Succeeding word (the):
Books probability (log10) −2.48 2.95 −0.84 0.40
Frequency (log10) 22.52 7.40 3.04 <0.01
Length −15.22 5.24 −2.91 <0.01
Frequency × Length −5.04 1.47 −3.42 <0.01

Previous word (and):
Books probability (log10) −0.62 4.15 −0.15 0.88
Frequency (log10) 6.67 6.16 1.08 0.28
Length −6.96 5.00 −1.39 0.16
Frequency × Length −2.56 1.07 −2.39 0.02
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3.2.3 Experiment 3

This suggests that we should focus on distinguishing between sampling differ-

ences and learning biases as the source of our effects. In particular, we were concerned

about the over/under-representation of responses based on psycholinguistic attributes

such as familiarity. It’s very plausible that this could arise from a true psychological

bias, but we also know that ordinary language experience, which has a substantial ver-

bal/conversational component, is quite different from the kind of written text which

makes its way into the corpora we are using. Maybe participants’ language experience

really does contain a higher proportion of ‘familiar’ words than are measured by our

corpora?

Unfortunately we can’t easily access participants’ history of language experi-

ence to find out; but what we can do is find another corpus that is hopefully more rep-

resentative. We use SUBTLEX (Brysbaert & New, 2009), which is a corpus of movie

subtitles, which is a convenient source of dialogic speech. Critically, the word frequen-

cies measured from SUBTLEX out-perform the word frequencies measured from most

other corpora at explaining response times on word recognition tasks (Brysbaert & New,

2009). Thus, while SUBTLEX is far too small to use to compute the actual probabili-

ties in context for our main study, we can expect that the overall mix of words which it

contains are more representative of those experienced by our participants in their lives.

3.2.4 Methods

We used a log-linear model as described above to regress Subtlex single-word

frequency counts against corresponding single-word frequency counts from the Web 1T

and Google books corpora. We left out those predictors which did not make sense in this

context (e.g., all of the stem-related predictors), leaving us with factors of familiarity,

concreteness, imageability, age of acquisition, and length. Significance tests were per-

formed on each factor via likelihood ratio test and corrected for multiple comparisons

by sequential Bonferroni. (However, since the data sets involved are so large, this was

largely superfluous; every effect was massively significant.)
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Table 3.5: Estimated coefficients from a log-linear model regression SUBTLEX frequen-
cies on Web 1T/Google books frequencies, plus other factors. Shaded cells are signifi-
cant. Positive/green cells indicate that words with this property are over-represented in
SUBTLEX as compared to the other corpora, while negative/red cells indicate that words
with this property are underrepresented in SUBTLEX as compared to the other corpora.

Web Books

Web/Books frequency 0.57 0.65
Familiarity 0.51 0.43
Concreteness −0.29 −0.26
Imageability 0.08 0.10
Age of acquisition −0.11 −0.14
Length −0.56 −0.55

3.2.5 Results and discussion

Results are given in Table 3.5. The words in SUBTLEX do differ from those in the

Web 1T and Google books corpora; the average SUBTLEX word is more familiar, less

concrete, more imageable, acquired earlier, and shorter. These differences are nearly

identical for both the web and book analyses, suggesting that they may arise primarily

from the difference between dialogic and written text.

Like our cloze data, SUBTLEX contains more usage of words with high famil-

iarity than would be predicted from the Web 1T or Google books corpora (though the

effect is roughly twice as strong for the cloze data). The estimated effects of image-

ability are also similar in magnitude between the two analyses, though they only reach

significance for the SUBTLEX data. The other effects, however, do not line up very

well; for instance, there is a substantial difference between our corpora and SUBTLEX

in terms of concreteness, but there is no such difference between our corpora and the

cloze responses; and the age-of-acquisition effects go in opposite directions.

However, we don’t really expect that SUBTLEX should be a perfect match to

cloze responses; after all, our participants probably both watch movies and surf the

web, among other linguistically relevant activities. What we take from this experiment

is that different types of language can differ dramatically in terms of the types of words

which they contain. We conclude therefore that we cannot rule out the possibility that

the effects of word type in Table 3.2 are artifacts of sampling differences between our

corpora and our participants’ experience, and thus should not interpret them as reflecting
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learning biases.

We also note that if concreteness, familiarity, and so forth differ between lan-

guage genres, then this may be another possible cause of effects which have been at-

tributed to them, for instance due to mismatches between the genre implied by one’s

experimental stimuli or assumed by one’s participants and the genre of the critical items

embedded in those stimuli.

3.2.6 Experiment 4

We next turn to our participants’ apparent disregard for the first word in each

cloze stem. This also seems particularly plausible as a learning bias — indeed, it exactly

mirrors the n-gram learning bias that we regularly impose on computational models to

improve their performance on sparse data! Furthermore, we cannot think of a plausible

mechanism for how this could arise as an artifact of our corpus sampling; why would

four word phrases have similar statistics between our corpus and our participants’ expe-

rience, while five word ones do not? However, it also seems plausible that it could be an

artifact of the cloze task itself, where participants may only partially skim each prompt

before responding in order to get through the experiment more quickly.

We reasoned that if this were the source of this effect, then we would predict

that participants engaging in a more naturalistic reading task (Experiment 2) would in-

clude the full context in their online predictions, especially since the self-paced reading

paradigm forces them to look at the first word of the text before they can get to the rest,

and because in this task they were required to answer comprehension questions, which

requires a certain attention to the sentences. (In the cloze task, by contrast, they could

write literally anything without receiving any error feedback.)

We know that overall in Experiment 2, cloze probability better predicted reading

times than corpus probability. But it might be that this is because cloze probabilities

are just overall more accurate, because they better reflect our participants’ language

experience. What we want to know is whether the discrepancy between corpus and

cloze probability that came specifically from ignoring the first word of each prompt is

also reflected in the reading time variations.
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3.2.7 Methods

We defined full context cloze as:

ClozeFull context = ClozeMeasured
Pcorpus(word | All 4 words of stem)(∑4

k=1 αkPcorpus(word | Last k words of stem)
)β1 1

Z
.

where the αk and β1 values were drawn from the regression of cloze on corpus probabil-

ities, and Z is a normalizing factor. Effectively, we’re using our log-linear model from

Experiment 1 to estimate exactly how the use of a reduced context changes the cloze,

and then correcting for that. If including the first word of the stem in our corpus proba-

bility calculation makes a particular continuation more likely, then we increase its cloze

value; if including the first word in the corpus calculation makes a particular continua-

tion less likely, then we likewise reduce its cloze. Otherwise, we leave the cloze alone.

For example, for P (action|The consequences of their), we have ClozeMeasured = 0.015.

This matches fairly closely to the web corpus probability given three words of context:

0.013. The corpus probability given the full context, however, is larger: 0.078. Using

this procedure, therefore, we find a higher ClozeFull context = 0.108. Critically, because

the actual cloze was larger than the cloze predicted by the partial-context corpus proba-

bility model, the full-context cloze is also larger than the full-context corpus probability.

We then re-ran the mixed-effects regression analysis described above for Ex-

periment 2, but now entering ClozeFull context and ClozeMeasured in the place of cloze and

corpus probability. The same controls and random-effects structure were used.

3.2.8 Results and Discussion

We were unable to reliably distinguish between ClozeFull context and ClozeMeasured.

However, ClozeMeasured trended in the correct direction, (web: t = −1.08, n.s., books:

t = −1.13, n.s.), while the effect of ClozeFull context was smaller and in the wrong direc-

tion (web: t = 0.11, n.s., books: t = 0.72, n.s.). So, we can say at least that there is

no evidence that our self-paced reading participants were more sensitive to context than

our cloze participants; the trend is the reverse, if anything.
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3.3 Conclusion and Future Directions

It’s clear that cloze and corpus probabilities differ (Figure 3.2), and that these

differences are highly systematic (Table 3.2). We’ve argued that there are at least three

places where these differences can arise. First, our corpora may not be representative

of our participants’ linguistic experience (Figure 3.1, a→b versus a→f). A possible ex-

ample of this would be the differences in word properties like familiarity between cloze

continuations and corpus continuations. Secondly, cloze probabilities themselves may

differ from participants’ internal subjective probabilities due to biases in how they pro-

duce cloze responses (c→e). A likely example of this would be the preference towards

repeating responses which have previously been given. Finally, participants’ predictions

may fail to accurately capture the statistics of the world (or even their experience) be-

cause they need to generalize from limited and sparse experience (b→c) — they need

to learn rather than simply memorize.

Futhermore, we have some plausible candidates for effects caused by such learn-

ing. The most striking is that our cloze responses appear to based on only partial context,

mimicking the n-gram smoothing commonly used in computational language modeling.

Along the same lines, we found that free association norms can predict cloze responses

above and beyond the actual corpus-measured co-occurrence of the relevant words; us-

ing a pairwise word association measure to predict upcoming words seems like a rea-

sonable strategy for the brain to adopt in the presence of sparse data.

While promising, however, these results are clearly not the end of the story, and

they suggest a number of directions for future work.

The first, and most obvious, is that of better nailing down the actual sources

of the discrepancies between cloze and corpus probabilities that we found. While the

differences between SUBTLEX and the Google corpora in terms of word properties

like familiarity make it plausible that these particular discrepancies arise from the non-

representativeness of our corpora, they do not assure it — particularly since the actual

magnitude of the differences reported in Tables 3.2 and 3.5 are quite different. If we

could somehow obtain a more representative sample of our participants’ language ex-

posure, then we could repeat this analysis; if sampling differences are indeed the root

cause of these descrepancies, then we would expect our more representative corpus to
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contain the same pattern of effects as reported in Table 3.2. Similarly, while it seems a

priori somewhat implausible that our participants’ apparent use of partial context could

arise as a sampling artifact — this would require the four-word phrases in our corpus

to have similar statistics to our participants’ experience, while the five-word phrases did

not — it would be good to test this. One method would be to extract sentences from

SUBTLEX that are similar to those we used as stimuli, and confirm that using the full

four words of context in the Google corpora outperforms using only three words of con-

text at predicting the next word of the SUBTLEX sentences. Another potential strategy

is illustrated by our (unsuccessful) Experiment 4 — with better chosen stimuli, and pos-

sibly higher quality materials, it should be possible to use online reading time data to

further distinguish between sampling artifacts and learning biases.

Our results also have methodological implications, as many people use cloze and

corpus probability estimates (usually with additional smoothing) as practical estimates

of subjective predictability. Our results support the use of cloze for this purpose. It may

be possible to do somewhat better, for instance by somehow correcting for the repetition

bias we discovered, and it is entirely possible that the task introduces other unknown

biases. (For instance, it might be interesting to see whether there is a bias towards

particular word classes — e.g., when confronted with a sentence frame that selects for

an NP, participants might prefer to use a simple noun, rather than adjective plus noun.)

But overall, Experiment 2 confirms that cloze is a reasonable measure for this purpose.

Of course, there are circumstances in which cloze cannot practically be used (e.g., our

experiments in chapter 2), and in general cloze cannot measure the predictability of

low-predictability events. In these situations our results may be useful in improving our

ability to estimate subjective predictability from corpus measures.

A third area for further research would be to study the effect of individual dif-

ferences in this task. For instance, working memory span might influence participants’

ability to identify the kind of context in which an isolated phrase is likely to have been

drawn from, and we might expect participants who are avid readers and conversational-

ists to have more accurate, less-smoothed probability estimates than other participants

who have less linguistic experience.

And finally, there is much more to be done on our central question: how do
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speakers produce predictions in novel contexts? The partial context and free associa-

tion norm effects that we found may be two examples of a more general strategy of

similarity-based generalization (Yarlett, 2008). For example, here are two cloze re-

sponses from Experiment 1:

1. It was no great fun

2. It was no great deal

Neither strikes us as particularly felicitous English, but both can be easily repaired. In

(1), deleting the negative to produce It was great fun gives a much more common phrase,

and in (2), replacing great with its synonym big produces the common idiom It was no

big deal. None of which proves anything, since this is just our intuitive sense of how two

arbitrarily picked responses might have arisen — but it does hint at a hypothesis for how

participants produce cloze responses (and, potentially, linguistic predictions in general),

in which near-neighors of the context that is actually observed can also influence the

response. We modeled one sort of near-neighbor in our analyses here — those in which

the initial words may differ, but the final words are the same — but these examples

suggest that we may need a broader definition. The techniques we use here could also

be used to test any particular theory one might have about such generalization. One

starting point might be to test whether participants are sensitive to different parts of

the context depending on where the relevant information falls — for instance, are they

ignoring the first word because they use an n-gram model, or because it happens that in

our experiment, the first word is the least informative and therefore the best candidate

for being marginalized over? Unfortunately limitations of our current corpora make it

difficult to compute the probability of a non-contiguous string, which is what would be

needed to test which words in the context are most informative about the continuation

— but these problems are surmountable, and doing so could give new insight into how

speakers turn past experience into predictions.
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Chapter 4

Regression-based ERP analysis: I.

Pointwise regression techniques

EEG activity recorded at the scalp measures ongoing activity from many differ-

ent parts of the brain, as well as various non-brain artifacts. Only a small portion of

this summed activity reflects processing related to any particular task, and so a major

challenge in analyzing and interpreting the data from EEG experiments is to distinguish

the task-related ‘signal’ from the unrelated ‘noise’. One strategy is to estimate the event

related potential (ERP), i.e., that portion of the EEG signal which is consistently present

across trials and time-locked to some event of interest. The usual method for estimating

the ERP is to extract time-locked epochs from the continuous EEG signal, align them,

and compute their point-by-point average. But the averaging approach places significant

limitations on experimental design: stimuli must be chosen to fall into a small set of dis-

crete categories, and these categories must differ only along the axes of interest, while

all other stimulus properties that might affect neural processing must be held constant.

In some experiments, such as those investigating language processing, it is generally

impossible to design stimuli that fully satisfy the latter requirement — every word has a

vast array of properties like length, frequency, orthographic neighborhood size, and so

on, which cannot be perfectly matched across conditions. And even when a rigid cate-

gorical design is possible, there remains value in being able to study the brain’s response

to more naturalistic stimuli that vary in continuous ways along multiple axes. Here, we

describe an alternative method for estimating ERPs by using multiple regression in place

65
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of averaging. This approach allows us to relax the above restrictions while retaining the

essential attributes of the standard approach.

We are, of course, not the first to consider the problem of analyzing EEG with

multiple and non-categorical factors. One piece of prior art is the ‘ERP image’ tech-

nique, which allows one to visualize the effect of a single continuous factor such as

reaction time on the ERP (Jung et al., 2001; Lorig & Urbach, 1995). In addition, a

number of groups have used forms of multiple regression to analyze EEG data, in a

variety of ways. One approach is to divide a continuous factor into a number of bins,

calculate the conventional ERP for each bin, and then derive some measure such as peak

latency or average activity which is entered into a linear regression analysis (e.g., King

& Kutas, 1998; DeLong, Urbach, & Kutas, 2005). (A variation on this approach is to

use bins so small that they contain only a single item; e.g., Laszlo & Federmeier, 2011.)

Others have calculated the average activation over some window within single trials, and

then entered these into a mixed-effects regression analysis (Amsel, 2011; Dambacher,

Kliegl, Hofmann, & Jacobs, 2006). Alternatively, some have proposed calculating a sep-

arate regression model at each possible latency, similar to the mass univariate techniques

used in PET/fMRI analysis (Hauk, Davis, Ford, Pulvermuller, & Marslen-Wilson, 2006;

Hauk, Pulvermller, Ford, Marslen-Wilson, & Davis, 2009; Rousselet, Pernet, Bennett, &

Sekuler, 2008; Pernet, Chauveau, Gaspar, & Rousselet, 2011). And yet others have pro-

posed using a non-parametric regression approach based on generalized additive models

(GAMs) (Hendrix, 2009; Tremblay, 2009; Tremblay & Baayen, 2010). However, none

these approaches have seen broad adoption, presumably in part due to confusion over

how, why, when, and whether they should be used, and how they relate to more tradi-

tional methods like averaging.

Our goal is not to add to this confusion by proposing yet another new method.

On the contrary: our goal is to show that all of these apparently disparate approaches

(or close variants of them that serve the same purposes) can be unified into a single

conceptual framework, and to present this framework in a way that makes it accessible

to researchers in the field. Critically, we argue that this framework should not be viewed

as an alternative to classic ERP averaging, but rather an extension that arises naturally

from a careful consideration of why we average in the first place. The result is a method
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which combines the essential familiarity of ERP analysis with the flexibility and power

of regression.

Because regression, as a technique, has been studied over more than two cen-

turies, there are standard ways of handling most situations that arise in practice. It turns

out that if we have an ERP experiment, then these conventions suggest that we simply

calculate ERPs. If there is a mild violation of the ERP assumptions — e.g., a partially

uncontrolled nuisance variable that is correlated with our variable of interest — then

we can statistically control for that nuisance variable while calculating what is effec-

tively an otherwise traditional ERP. Yet the use of a unified framework also allows us

to handle even the most complex situations in a straightforward manner. For example,

previously, if one wished to use the ERP image technique to obtain a detailed picture of

one continuous factor’s effect, one could not also use a multiple regression technique to

distinguish the simultaneous effects of multiple continuous factors. In this framework,

we can easily combine the two methods if appropriate.

4.1 Least-squares estimation for ERPs

We begin by reviewing the theory underlying traditional ERP averaging. ERP

analysis starts from the presumption that whenever a particular type of event occurs

(e.g., a stimulus appears on a display), then the brain produces a fixed pattern of neural

activity — the ERP itself — that is time-locked to that event. In an ideal world, we

could just present our stimulus once, measure this response, and be done. But reality, of

course, is never that simple. In this case, the difficulty is that there is always a great deal

of other ongoing neural activity that doesn’t care about our experimental manipulation

at all (or if it does care, then not in a way that matches the assumptions of ERP analysis),

and what we actually measure on any single trial will be the sum of the ERP activity

and this background activity. So the problem is: given that we can’t measure the ERP

directly, how can we estimate it from the data that we can measure?

A note on terminology: the word ‘ERP’ is often used interchangeably to refer

to either the underlying time-locked brain activity that we are trying to measure, or to

the output of a numerical procedure applied to data to estimate that activity. In the
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present context, this seems likely to cause confusion, so we reserve ‘ERP’ to refer to the

postulated brain activity, and say ‘ERP estimate’ when discussing any estimate based

on data.

To make things simpler, let’s focus on estimating the value of the ERP at one

single electrode and latency — e.g., 136 ms post-event at electrode Cz. (Once we’ve

worked out how to do that, we can estimate the rest of the ERP by applying our technique

again at all the other electrodes and latencies.) The value we’re trying to estimate, then,

is just a single number, which we call β. To estimate β, we use the measurements we’ve

made of the scalp potential at 136 ms post-event, at Cz, on many trials — this is a list

of numbers, which we call y1, y2, y3, . . . , yn. And our assumption is that the physical

process which produced these numbers was the summation of the true ERP plus each

trial’s background “noise”:

y1 = β + noise1

y2 = β + noise2
...

yn = β + noisen

Or, for short, we just write

yi = β + noisei.

Notice that on every trial, the value of the noise (at this latency and electrode) is differ-

ent, but the value of the ERP is always the same.

At this point, most texts on ERP would suggest that we just estimate β by taking

the average of the yi values. But why, mathematically, is that a good idea?

We know the values of yi, but not β or noisei. If we knew what noisei was,

we could just solve for β; contrariwise, if we knew β, we could solve for the noise:

yi − β = noisei. We know neither, so we need some other technique, and the oldest,

simplest, and most widely studied heuristic for solving such problems is to use the

principle of least-squares. This principle says that we should choose β to be the number
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which makes the total squared noise

squared noise =
n∑
i=1

(noisei)2 =
n∑
i=1

(yi − β)2

as small as possible. This is an exercise straight out of freshman calculus — to minimize

this formula, we first take the derivative:

d

dβ
squared noise =

d

dβ

n∑
i=1

(yi − β)2

=
n∑
i=1

−2(yi − β).

Then we set it equal to zero:

n∑
i=1

−2(yi − β) = 0

And finally use algebra to solve for β:

−2

(
n∑
i=1

yi −
n∑
i=1

β

)
= 0

n∑
i=1

yi =
n∑
i=1

β

n∑
i=1

yi = nβ

1

n

n∑
i=1

yi = β.

That final formula should be familiar — it says that according to the least-squares prin-

ciple, the best way to estimate β is to take the average of our measured values, y1, . . . ,

yn. From a certain perspective, we might even say that this is the whole reason why

using averaging to estimate ERPs makes sense in the first place.
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4.2 From averaging to regression

We’ve seen that the traditional averaging method for estimating ERPs can be

justified as being the least-squares solution to the equation

yi = β + noisei.

This chapter’s central observation is this: the above equation is a particularly simple

example of the general least-squares linear regression formula, as can be found in any

statistics textbook:

yi = β1x1i + β2x2i + · · ·+ noisei.

So what happens if we estimate ERPs using full-fledged linear regression, instead of just

the simplified version?

Just as before, the yi values are set to equal the measured scalp potential at a

single electrode, at a single latency, across different trials. The xji values (the predic-

tors) are set to indicate various properties of the stimulus presented on trial i, coded

numerically. (The original ERP equation that we derived above effectively has a single

predictor, x1i, whose value is always 1. We can think of this as a particularly vague

property that simply says yes, this stimulus is a stimulus.) And, once we’ve measured

the yi values and specified the xji values, we again use the principle of least-squares to

find those values for β1, β2, . . . which together minimize the total squared noise. Each

β value then gives an estimate of some portion of the ERP at this electrode and latency.

Alternatively, for any particular stimulus i, we can compute the sum β1x1i+β2x2i+ · · · ,
which is the model’s prediction for the ERP to this stimulus at this latency.

Actually calculating these β values in practice is somewhat more complicated

than just taking the average, but not by much — there is a standard formula for them

which any modern computer can use to reliably calculate them in a few milliseconds.

We then repeat these calculations many times, once for each electrode and latency. As

we do, we keep the same xs — since these represent properties of the event that each

trial is time-locked too, which do not vary across electrodes or latencies — but swap out
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the y values to represent the measurements made at each electrode and latency across

our different trials. Finally, we gather up all the computed β1 values to make one wave-

form, all the β2 values to make a second waveform, and so on for all of the βs. Then

these waveforms can then be graphed, smoothed, entered into statistical analysis, and

generally treated exactly as if they were ERP estimates obtained from averaging. Like-

wise, we can combine βs together to compute the predicted waveforms for particular

stimuli, and these predictions too can be analyzed like ERP estimates obtained from av-

eraging. To distinguish them while emphasizing their similarity, we refer to these ERP

estimates obtained from regression models as rERPs.

While rERPs can be treated much like traditional ERP estimates, there is an im-

portant shift in our perspective. Many of us are used to thinking of data analysis in

terms of deciding how to manipulate our data to achieve a desired result. In the regres-

sion framework, we instead focus on setting up the predictors which best describe our

experiment, and then our computer’s least-squares program takes care of automatically

deriving the optimal data processing method from this description.

But how do we define the xs, and how do we interpret the resulting rERP wave-

forms? Some examples should make this clearer — starting with some that show how

familiar ERP ideas can be expressed in the traditional language of linear regressions,

and then moving on to more novel capabilities. To make this more concrete, let’s pre-

tend that we have a hypothetical experiment to analyze, a variant of the standard oddball

paradigm (Squires, Squires, & Hillyard, 1975). In our version, a mixture of standards

and targets are displayed at randomly varying eccentricities from fixation (Figure 4.1).

This gives us one two-level categorical factor (standard versus target), and one continu-

ous factor (eccentricity).

4.2.1 The basic ERP as an intercept term

The simplest example is the one we have already seen — suppose we define just

a single predictor, as:

x1i = 1
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Figure 4.1: A hypothetical oddball experiment used to illustrate the rERP technique.
A series of standards (squares) are interspersed occasionally with targets (stars). In
addition, each item appears at some varying eccentricity (positive or negative) from
fixation.
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β1 x1i β2 x2i Predicted ERP

a Standard:

× 1 =

Target:

× 1 =

b Standard:

× 1 + × 0 =

Target:

× 0 + × 1 =

c Standard:

× 1 + × 0 =

Target:

× 1 + × 1 =

Figure 4.2: The relationship between xs (predictors), β coefficients (rERPs), and pre-
dicted ERPs, for various stimuli. Data is fictional. (a) Intercept-only models fitted to
subsets of the data. (b) Dummy coding. (c) Treatment coding.

In linear regression terminology, this predictor is known as an intercept term. Then our

regression equation is

yi = β1x1i + noisei = β1 + noisei

and as we saw above, when we find the least-squares solution, β1 will simply end up

equal to the mean of the yi values. (Figure 4.2a)

Therefore, this is not only a legitimate method for estimating the activity time-

locked to some event, but it produces results that are exactly identical to the conventional

averaging technique. However, if we have categorical factors with multiple levels, then

it requires us to fit two different models — one on the subset of trials that represent

standards, and another on the subset of trials that represent oddballs.
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4.2.2 Multiple ERPs via dummy coding

Instead of fitting multiple models, we can estimate both ERPs at once within a

single regression model by using a trick known as dummy coding, which is one of the

standard ways to handle categorical variables within regression models.1 If we define

two different predictors, like so:

x1i =

1 if stimulus i is a standard

0 if stimulus i is a target
x2i =

0 if stimulus i is a standard

1 if stimulus i is a target

and then plug them into the standard regression equation:

yi = β1x1i + β2x2i + noisei

then least-squares fitting will set β1 to the average of the standard trials, and β2 to the

average of the target trials (Figure 4.2b).

It’s easy to see why this happens. If i is a standard trial, then x1i is 1 and x2i is

0, so we have

yi = β1 × 1 + β2 × 0 + noisei = β1 + noisei

Of, if i is a target trial, x1i is 0 and x2i is 1, so we have

yi = β1 × 0 + β2 × 1 + noisei = β2 + noisei.

So effectively we end up fitting β1 and β2 on two different subsets of the data. The only

difference from the previous example is that before, we did this explicitly; now, we just

defined our xs and the appropriate data splitting happened automatically as a result of

the least-squares fitting process.

1This is the default method of coding categorical variables used by SAS (SAS Institute Inc., 2010),
and is also used by default by R (R Development Core Team, 2010) for models that do not contain an
intercept term.
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4.2.3 Difference ERPs via treatment coding

However, a more common method for handling categorical variables in regres-

sion is by treatment coding.2 This consists of dummy-coding all but one of the levels

of our factor (this level that’s left out is known as the reference level), and adding an

intercept term. For example, taking standards as our reference level, we have:

x1i = 1 x2i =

0 if stimulus i is a standard

1 if stimulus i is a target

With this coding scheme, least-squares fitting will set β1 to the average of the standard

trials, and β2 to the difference between the target trials and the standard trials, i.e., β2
will be a conventional difference ERP (Figure 4.2c). Hence the name ‘treatment coding’:

usually, we choose a control condition for our reference level, and each βj then tells you

how you expect your outcome values to change as you apply the relevant non-control

‘treatment’.

This also illustrates a very important aspect of interpreting regression formulas,

which is that the fitted value of each βj depends not just on how we defined the jth

predictor, but on all the predictors, x1i, . . . , xni. In both this example and the previous

one, we used the exact same definition for x2i, but β2 changed completely depending

on the how x1i was defined. (This is why we prefer the name treatment coding for

this particular coding scheme, even though SPSS and many references refer to it as,

simply, ‘dummy coding’. As we’ve seen, using 0/1 dummy coding for some levels of

a factor can produce very different results depending on how other levels are coded,

but treatment coding refers specifically to this scheme in which all-but-one level are

dummy-coded.) Likewise, we saw above that if all you have is an intercept, then the

corresponding β will give the grand mean of all your data, but here it gives the mean

of the standards only. This behavior is actually the source of one of regression’s great

strengths, but it can be quite confusing when first encountered.

The key to understanding what will happen in these models is to remember that

least-squares fitting is focused entirely on the predicted values (the rightmost column in

2This is the default method of coding categorical variables in R and SPSS (IBM, 2010).
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Figure 4.2); it will pick whichever β values make these predictions match the data as

closely as possible. In this case, in order to make the predictions for standards as accu-

rate as possible, the fitting algorithm has to set β1 to be equal to the ERP for standards,

and then for targets, our predictors are defined in such a way that it has to use β1 there

as well. So to make the prediction for targets come out, it has to set β2 to be whatever

value will give the right predictions after being summed with β1.

Imagine what would happen if it instead set β2 to the ERP for targets, as in the

pure dummy coding example above. Its final prediction for targets would then be the

sum of the ERP to standards and the ERP to targets, resulting in a doubled N1, P2 etc.

This, obviously, is not supported by the data! Since β1 does a good job of explaining

the initial N1/P2 complex for targets, there is nothing left in this time period for β2 to

do. The more general principle is that in cases like this, where there is some potential

redundancy between predictors — where there are multiple βs that have some chance

of explaining the same pattern in the data — then the least-squares fitting process will

automatically divy up responsibility between them, in whatever way explains the data

best. Such redundancy is better known as collinearity or confounding, and one of the

great strengths of regression is that — given sufficient data — it can accurately analyze

data with even high degrees of collinearity.

Of course, this only works when your predictors are partially, but not completely,

redundant. An example of complete redundancy would be if we entered the same pre-

dictor twice, or — less obviously — if we used the simple dummy coding scheme above,

but for two different factors at once. For instance, suppose in our oddball experiment

we added a second categorical variable by making some of the displays red, and some

blue. Then we could define four predictors:

x1i =

1 if stimulus i is a standard

0 if stimulus i is a target
x2i =

0 if stimulus i is a standard

1 if stimulus i is a target

x3i =

1 if stimulus i is red

0 if stimulus i is blue
x4i =

0 if stimulus i is red

1 if stimulus i is blue

But this would be a bad idea, and most well-written regression programs will give an
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error if you attempt to fit such a model. To see why, suppose that there is some compo-

nent — perhaps the N1 again — which is identical between all four conditions. Then

one way to explain it would be to say that seeing a standard causes and N1, and so does

seeing a target. Another way to explain it would be to say that N1s are caused by red

items and also by blue items. Or perhaps standards and targets both cause a positivity

during this window, while red-ness and blue-ness both cause an even greater negativity

to cancel it out. The end result is that there are many different combinations of β val-

ues which all produce the same predicted ERP; and since least-squares fitting works by

trying to find the best match between predictions and data, it has no way to distinguish

between different β values that make the same prediction.

This problem does not arise for treatment coding, which is why it is generally

preferred over strict dummy coding. Following the treatment coding idea, we would

handle this same data by choosing as our predictors an intercept (x1i), the dummy coded

versions of all non-reference levels for both of our categorical factors (x2i and x3i), and

then adding an interaction term (x4i):

x1i = 1 x2i =

0 if stimulus i is a standard

1 if stimulus i is a target

x3i =

0 if stimulus i is red

1 if stimulus i is blue
x4i =

0 if stimulus i is either red or a standard

1 if stimulus i is a blue target

(Notice that x4i = x2i × x3i, which is the general rule for defining interaction terms.)

In this case, β1 would give the ERP for red standards, β2 would give the difference

ERP between red targets and red standards, β3 would give the difference ERP between

blue standards and red standards, and β4 is a difference-of-differences ERP — if we

first calculated the difference ERP between blue targets and blue standards, and then

calculated the difference ERP between red targets and red standards, then β4 would be

the difference between these two difference ERPs. β4 will be significantly different from

zero exactly when there is a non-additive interaction between our two factors.
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4.2.4 ‘Slope’ ERPs from numeric predictors

By this point it’s hopefully clear how standard ideas from ERP analysis corre-

spond closely to some of the conventional ideas from regression theory. Now we’ll see

how the regression approach also allows us to analyze a continuous factor like eccen-

tricity. (This approach has been used to study work recognition in EEG; Hauk et al.,

2006, 2009.3) The core idea is very simple. We can simply define a predictor that indi-

cates the eccentricity of each trial. In practice, we’ll always want to include an intercept

term as well; otherwise, we’re assuming that whenever our predictor is zero, the ERP

will be perfectly zero as well. (There may be some cases where this makes sense —

perhaps if the predictor indicated visual contrast, then we’d expect no response at all to

a zero-contrast display. But such cases are unlikely to arise often in practice.) To look

at the eccentricity effect, we can define predictors:

x1i = 1, x2i = eccentricity on trial i, in degrees of visual angle.

Now β1 will give a kind of baseline ERP — the ERP we expect to see for items with

x2i = 0, i.e., items displayed in the center of the screen. β2 estimates how much this

ERP changes with each 1◦ change in visual angle (Figure 4.3). It is the slope of the

regression line that relates x2i and yi.

Notice the similarity between these predictors and the predictors we used for

treatment coding above. In both cases, we have an intercept term x1i whose correspond-

ing parameter β1 gives us a kind of baseline ERP, and then there is an additional term

x2i which codes for deviations from this baseline. With treatment coding, this second

parameter β2 measures the difference in scalp voltage between targets and standards,

and has units of µV. Here, β2 measures the difference in scalp voltage corresponding to

any 1◦ change in eccentricity, and has units of µV per degree of visual angle. Our slope

rERP β2 is a new variant of the familiar difference ERP.

At this point, though, we might get worried. What if going from 0◦ to 1◦ is

different than going from 10◦ to 11◦? As currently phrased, our model assumes that

3Hauk et al have also argued that ERP averaging is a special case of regression, on the grounds that
both are linear operations. However, we believe that the fact that both are the least-squares solution to the
problem of estimating ERPs embedded in noise is a deeper connection.
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β1 x1i β2 x2i Predicted ERP

Eccentricity −1◦:

× 1 + × −1 =

Eccentricity 0◦:

× 1 + × 0 =

Eccentricity 1◦:

× 1 + × 1 =

Eccentricity 2◦:

× 1 + × 2 =

Figure 4.3: The relationship between xs (predictors), β coefficients (rERPs), and pre-
dicted ERPs, for various stimuli in a model containing a single continuous predictor.
Data is fictional.

these are the same — it assumes that the effect of eccentricity is linear. When this

assumption is true, then it gives this technique additional statistical power. We can think

of this as the fitting process automatically finding all the 0◦ trials and comparing them

to the 1◦ trials, and then pooling this together with comparisons of 10◦ trials versus

11◦ trials, and all other such comparisons; this increases the effective data set size, and

allows for more accurate estimates (Cohen, 1983).

Nevertheless, we may not wish to take this linearity on faith, and we will return

to discuss methods for estimating non-linear relationships in a later section. For now,

we settle for pointing out that if we know how the ERP response to our stimulus prop-

erty deviates from non-linearity, then we can transform this property when defining our

predictor. For instance, word frequency famously has a logarithmic effect on reaction

times (Howes & Solomon, 1951; McCusker, 1977); for word stimuli we might want

to define a predictor like x2i = log(Frequency of word i). In fact, we are allowed to

apply arbitrary transformations to stimulus properties when defining our predictors —

the ‘linear’ in ‘linear regression’ means that the relationship between our outcome (the

predicted ERP) and our predictors (the xji) has to be linear. The relationship between
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the properties we care about and the xji values that we actually enter into the regression

can be anything we like. There are only two things we must keep in mind when using

such transformations: first, that the resulting β coefficient will describe how the ERP

changes with each unit change in xji, which may be different from a unit change in the

original stimulus property. And second, that — as usual — transforming one predictor

in our regression may cause the other β values to change as well, in order to keep the

overall predicted ERP as close as possible to the data.

One particularly simple and useful transformation is to center our predictors;

that is, to subtract the mean value off of each before entering them into the regression

model. Assuming our model has an intercept term, this will not change the model’s

predictions at all. But recall that the β for the intercept term corresponds to the predicted

ERP when all other predictors are zero. If we change our other predictors so that they

have the value zero at their average value, rather than at their natural zero point (which

may not correspond to any possible stimulus), then the intercept term’s β will become

interpretable as the ERP for an ‘average stimulus’.

Of course, even if we don’t center our predictors, we can always plug the average

value of our predictors into the regression formula to calculate the predicted ERP for an

‘average stimulus’, and this estimate will be identical to the one we would have gotten

by centering our predictors and re-fitting our model. So centering our predictors has

largely an aesthetic, rather than substantive, effect on the analysis. But aesthetics matter;

it makes interpreting such models just a little bit simpler for a trivial amount of effort,

so it still seems worth following as a standard practice.

4.2.5 Putting it all together

So far we’ve analyzed categorical factors, and a continuous factor, but what hap-

pens when you have both? By this point, the answer is hopefully obvious: we simply

put both sets of predictors into a single model. (This combined approach has been used

to study the EEG response to face recognition: Rousselet et al., 2008, 2009, 2010.) To

analyze our hypothetical oddball experiment, we’d want a model something like this:

x1i = 1
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x2i =

0 if stimulus i is a standard

1 if stimulus i is a target

x3i = eccentricity on trial i, in degrees of visual angle

(See Figure 4.4). The resulting βs have the same interpretration as they did in the pre-

vious examples in which these same predictors occurred — β1 gives the predicted ERP

for standards with zero eccentricity, β2 gives the difference between targets and stan-

dards (under the assumption that this is the same for all eccentricities), and β3 gives the

change in the predicted ERP for each unit change in eccentricity.

The only difference from before is that now, since the predictors all appear in

a single model, the predictors must work together cooperatively to explain the data. If

you have two predictors which are correlated with each other, then the model will be

forced to choose which of them — or what combination of them — best explains the

data. Therefore, if you were to actually run this or a similar experiment, then this is

the very simplest model we would ever recommend using for analysis. (Please ignore

our earlier examples that used only a subset of these terms — those were presented

for purely pedagogical purposes!) The reason for using as rich as possible a model by

default is simple. If you have a designed experiment with orthogonal factors, where

each x vector of predictor values is orthogonal to all other predictors in your model,

then it doesn’t matter whether you analyze each factor one at a time in separate models,

or all at once in a single model — you’ll get exactly the same β coefficients out either

way. On the other hand, if you don’t have an orthogonal model, then you have, by

definition, a confounded model — and in the presence of confounding, analyzing single

factors at a time may be actively misleading. In fact, it might be wise to go further, and

add (at least) a term to represent the interaction between targets versus standards and

eccentricity. Such a term would be defined as x4i = x2i × x3i, and if it were included,

then β3 would denote the eccentricity effect for standards, while β4 would denote the

difference between the eccentricity effect for standards and the eccentricity effect for

targets — note the similarity to our earlier discussion of categorical interactions.

As usual, there is a tension here. As we add more flexibility to our model, then

we find ourselves trying to extract more information from a fixed amount of data. At
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one extreme, one could enter a different dummy-coded predictor for every stimulus

that appears in the experiment. If we had unlimited data, this might even be the best

option; in some experiments, every stimulus is, in fact, different. But in practice, such

an analysis is unlikely to be useful. Instead, we have to strike a balance: as we weaken

our model’s assumptions, we increase the chance that it can accurately represent reality

— but these assumptions about the form of the relationship between stimulus properties

and brain response are exactly what allows the model to pool data across multiple trials

to achieve stable estimates. So we have to strike some trade-off that allows us to achieve

acceptable stability with maximum accuracy. One of the great advantages of regression

models is that they let us move mindfully between these extremes, and to use relatively

mild assumptions when possible to let the data speak.

As more terms and interactions are added to a model, it may become a challenge

to interpret the various β coefficients. The key to achieving clarity in such situations is

always to consider how the coefficient under consideration affects the overall predicted

ERP. We find that drawing pictures like those shown in Figure 4.2 often helps.

4.3 Non-linear regression

The models we’ve discussed so far make a very specific assumption about the

effect that any continuous factor will have on the ERP: that it will be linear. This is

unlikely to be strictly true in most cases, and often we will not know what relationship

actually holds in its place (indeed, this may itself be our research question!). Fortunately,

the regression framework provides a variety of standard techniques for estimating non-

linear relationships from data.

Such techniques are powerful and, when used appropriately, can do anything that

a simple linear model can do and more. But this power does come at a cost in conceptual

complexity, and their use may therefore demand greater sophistication on the part of the

analyst, her analysis software, and her audience. So before describing their application

to EEG analysis, we want to emphasize that they are likely to add more value in some

situations than others.

The assumption of linearity is not so arbitrary as it may seem, and may in fact be
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a viable simplifying approximation in many cases.4 Most relationships seen in the real

world are smooth to a greater or lesser extent. (Smooth means that nearby points have

similar values; the more a curve jumps or wiggles, the less smooth it is.) Locally, smooth

functions can be reasonably approximated by a linear function. For instance, consider

the logarithmic relationship between predictability and reading time that we graphed in a

previous chapter. While this curve is highly non-linear, it only begins to bend sharply at

low probabilities. If we had only looked at word probability in the range of 0.05–1.0 —

as most ERP studies do — then this curvature would have been mild, and a linear model

would have captured the data nearly as well as a logarithmic one. Furthermore, while

U-shaped relationships do occur in neuropsychological research, they are the exception,

rather than the rule. Most relationships are monotonic. If the factor we are studying has

a monotonic effect on the ERP, and if all we care about is detecting whether or not an

effect exists and determining its overall directionality, then a linear model will get the

job done.

Even if we are interested in the detailed shape of some relationship, we may not

have enough data to estimate it. Even when we relax our linearity assumption, we still

must make some assumptions about the range of possible curves. Otherwise we cannot

rule out pathological curves that, for instance, pass through every single data point.

While there are variety of techniques used to accomplish this, they in general take the

form of somehow requiring our curves to be simpler and less wiggly. The fewer data

we have, the stronger these assumptions must be. When our data is sufficiently limited,

we may find ourselves required to use constraints so strong that we are effectively doing

linear regression after all. In such situations, again, we lose little by using conventional

4It’s also worth noting that we already make this linearity assumption in other situations when ana-
lyzing ERP data. For instance, when choosing words to use in a language experiment, we often want to
choose two sets of words which are matched on a large number of word properties that would otherwise
become possible confounds, such as cloze, frequency, concreteness, orthographic neighborhood size, and
so forth. Ideally, we would choose pairs of words such that each pair was perfectly matched on all of
these properties, but in practice we often settle for ensuring that the average value of these properties is
matched between the two groups. The reasoning is that if these properties are the same on average, then
they cannot cause any differences in the ERPs between our two sets — which is only justified if we also
assume that these properties have a linear effect on the ERP. If concreteness, say, has a non-linear effect
on the ERP, then even with all other confounds controlled for, the average ERP to a set containing one
word with concreteness score 1.0 and one word with concreteness score 3.0 may not be the same as the
average ERP to a set containing two words that both have concreteness scores of 2.0, even though the
average concreteness is the same in both cases.



85

linear regression to start with.

On the other hand, there are situations where allowing non-linearities in our re-

gression is particularly valuable. The most obvious is when the shape of the relationship

is itself a target our of our analysis (as, for example, in the previous chapter). A less

obvious case occurs when our analysis includes control factors — factors whose effect

we don’t actually care about, but that are correlated with factors that do care about. It’s

wise to include them in our model anyway in order to ensure that we don’t accidentally

attribute whatever effect they do have to our factors of interest. For such factors, we

aren’t particularly worried about giving them too much flexibility and allowing them to

overfit the data — we don’t plan to try interpreting them anyway, and the worst that

could happen is that they soak up more variance than they really deserve. This is far

better than a model which is too inflexible, and fails to fully account for the control

factor’s real effect, leaving some portion of it to be spuriously explained by the factors

we do care about.

The third case where a non-linear model is useful is when we have reason to be-

lieve that there may be a U-shaped effect. That may be obvious, but in the ERP context,

there is a less obvious consequence: if some factor cause the latency of a component to

vary, then that factor will produce a U-shaped effect at some time points. For instance,

on the go trials in the go/no-go task we analyze below, there is a positivity associated

with the response, and in the ERP this positivity therefore has a latency which varies

with reaction time (RT). A fast response is around 300 ms; a slow response around 600

ms. Therefore, at around 400–600 ms in the ERP, you see an increased positivity for

medium-length RTs as compared to both short or long RTs. This is a U-shaped effect of

RT on ERP amplitude.

There is a huge literature on non-linear regression; our goal is to show specifi-

cally how the basic idea of non-linear regression (however implemented) applies to ERP

analysis. Therefore, we give only a brief introduction here; for more information, see

e.g. Wahba (1990) or Wood (2006).

In order to fit non-linear models with linear least-squares regression, we need

a trick. That trick is to pick some particular set of basis functions, f1(x), . . . , fk(x),

which are chosen so that taking weighted sums of them, α1fx(x) + · · · + αkfk(x), lets
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us construct a wide variety of non-linear curves. Different sets of basis functions lead

to different spaces of possible curves, and there are some good standard sets which are

generally used. More important is the choice of how many basis functions we wish to

use, since the more we use, the more flexible our space of possible curves — and the

more data we need to get sensible estimates. The clever part is that when it comes time

to do the regression, we define a set of different predictors, one for each basis function:

x1i = f1(eccentricity on trial i)

x2i = f2(eccentricity on trial i)
...

xki = fk(eccentricity on trial i)

Now the least-squares fitting will do its usual thing, and find whatever set of weights

β1, . . . , βk cause these predictors to best match our data. As a result, the individual βs

are generally not very interpretable on their own, but they tell us which curve in our

space of many possible curves best fits the data: it’s the curve you get by taking the

weighted sum β1f1(x) + · · · + βkfk(x). We’ve tricked a linear technique into fitting a

non-linear curve.

As usual, then, we redo this fitting process at each latency relative to the time-

locked event, and arrive at a set of β values for each time point. That part’s straightfor-

ward. The challenge is what to do with these β values. Before, we had only a single β

value at each time point, so we simply graphed that against time. Now, we have a set

of β values, none of which are meaningful on their own — really, what we have is a

full curve at each time point. In order to visualize the curve for a particular time point,

we use a colormap to convert each point on that curve into a dot of color, and we stack

these dots vertically. When we repeat this process at all of the different time points, we

produce a two-dimensional colormapped image with time on the x-axis, our factor of

interest (e.g., RT) on the y-axis, and the color of each point representing the predicted

amplitude of the ERP response to a particular value of our factor at a particular point in

time.

The simplest way of creating basis functions is to divide up the possible values
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a c

b d

Figure 4.5: Two sets of possible basis functions for use in fitting non-linear curves to
data. (a) A step-function basis with 5 functions. (b) By taking weighted sums of the
step functions in (a), we can construct any piecewise-constant function. Two examples
are shown here. (c) A cubic B-spline basis 5 functions, as constructed by the function
bs() in R. (d) By taking weighted sums of the spline functions in (c), we can construct
a wide variety of smooth curves.
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for our factor into several non-overlapping ranges. For each each range, we define one

basis function as

fj(x) =

1 if x falls in the jth range of values

0 otherwise

(See Figure 4.5a). By taking weighted averages of these functions, our regression

model is able to construct any function which is piecewise-constant on these ranges

(Figure 4.5b). Notice that when we then use these basis functions to make predictors

xji, these predictors will be very similar to the dummy- or treatment-coded categorical

predictors above; we can think of them as indicating categorically whether our factor

of interest falls into a particular range on each trial. Using this set of basis functions is

therefore equivalent to the common practice of splitting a continuous factor into two or

more bins (e.g., a median split) and then averaging across each bin (Kutas & Hillyard,

1984, e.g.).

But while a step-function basis is simple, it produces rather odd-looking stair-

case functions, which seem unlikely to actually represent any real brain response. A

more standard way of constructing a basis for this kind of regression would be to use

spline functions. While there are a number of different types of splines (which you

choose usually matters little in practice), one example is shown in Figure 4.5c. The

characteristic features of splines are twofold: first, like the step functions we saw ear-

lier, each basis function covers a fairly short range of the data, with minimal overlap.

As a result, the behavior of our fitted curve near any particular value will primarily be

determined by the data which we actually observed near that value, since only those data

points are able to affect the relevant β coefficients. But, unlike the step functions, they

produce more realistic smooth curves (Figure 4.5d).5

In Figure 4.6, we demonstrate the results of using these two sets of basis func-

tions to analyze data from a mid-line parietal site in 1077 go trials from 7 participants

5It is sometimes suggested that one could use a polynomial basis, i.e., one in which f1(x) is a linear
function, f2(x) is a quadratic function, etc. This approach does produce smooth curves, but it fails on our
first criterion: aberrations in the data in one localized region might cause the entire fitted curve to change
radically. This is a significant obstacle to interpreting and trusting the results of polynomial regression,
and better methods are available.
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Figure 4.6: Demonstration of non-linear rERPs applied to analyzing an effect on the
latency of an ERP positivity. (a) Regression using a step-function basis set containing
5 step-functions. This is equivalent to the standard approach of splitting the data into
5 equal-sized bins and calculating the average over each. Each horizontal line across
the image represents one predicted ERP. (b) Regression using a cubic B-spline basis set
with 5 degrees of freedom. (c) Simple linear regression, as described in previous sec-
tions, but plotted as an image for comparison. (d) An ERP image of the same data for
comparison (trials are sorted by RT, then vertically smoothed by a gaussian-weighted
moving average with σ = 75 trials). In each plot, a black line shows where the response
fell within each epoch, and a histogram on the right shows how many trials were ob-
served in each range of the y-axis. (a)–(c) are rERPs. (a) and (d) are standard methods
in the literature. The difference in the histogram and overlaid RT plot between (d) and
the other images is due to the difference in y-axes.
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in a go/no-go task6. We also include the result of using a simple linear model to analyze

these data (Figure 4.6c). We could plot this as a conventional waveform, but since a line

is just a particularly simple curve, we also have the option of plotting it using the same

two-dimensional technique as we use for the non-linear regression estimates. We do so

here, for comparison.

Notice that in Figure 4.6a and b, there is a pronounced diagonal pattern visible

in the 400–600 ms range. This diagonal pattern is what a latency effect looks like. But it

is absent in Figure 4.6c; during this period, the estimated slope coefficient is essentially

zero. This is because in this region, the latency effect creates a U-shaped relationship

between our factor RT and the ERP response: the ERP shows a positivity to RTs on

the order of 450 ms, but not RTs which are either faster or slower. The linear model is

unable to capture this U-shaped relationship. The linear model does successfully capture

the effect before and after this region, but if we looked only at it, we might have instead

interpreted this effect as a positivity to short RTs at∼400 ms followed by a negativity at

∼600 ms. (Of course, in principle it is still possible that some complicated combination

of fixed-latency positivities and negativities would produce the observed pattern, but

once we’ve see the non-linear fit the varying-latency interpretation becomes much more

plausible.) This is another way that slope rERPs are similar to conventional difference

waves — if we had divided our RTs into just two bins and averaged them, then we would

face the same ambiguity. Detecting a latency effect requires the use of more than two

bins, or, equivalently, some form of non-linear regression.

On the right of each image, we plot a histogram showing how much data was

available in different parts of the range of RT values. In general, the curves will be more

trustworthy in areas where more data is available. In the top portion of Figure 4.6b we

can see the effects of data sparsity reflected in the more smeared out curve estimates.

Finally, we also include an ERP image (Jung et al., 2001; Lorig & Urbach, 1995)

of this same data (Figure 4.6d). An ERP image is produced by simply sorting a number

of trials according to some factor of interest (RT, in this case), and stacking the raw

data from these trials on top of each other. Then we use a moving average to smooth

out the raw data measured at each latency on adjacent trials, and plot the results as a

6Data from Urbach & Kutas, 2008. Thanks to Tom Urbach for sharing this data.
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two-dimensional pseudocolor image. This smoothing serves exactly the same purpose

as our use of a limited set of basis functions, in that it allows us to pool data from trials

with similar RTs, to reduce the effect of noise while still being able to see whatever

non-linearities are present. In fact, while we focus here on the basis function approach

for its simplicity, the use of such non-parametric smoothers is a well-studied alternative

technique for peforming non-linear regression (e.g., Hastie & Tibshirani, 1990).

The main difference between the ERP image and the non-linear rERP estimate

is the y-axis. For the ERP image, this is the trial number; if we had seen a different

distribution of RTs, then our image would be stretched and squished accordingly. For

the rERP estimate, the y-axis is the RT itself; a different distribution of RTs would

potentially make our estimates more or less accurate at different points on the y-axis,

but would not change the overall shape of our image.

This invariance is arguably an advantage of the rERP approach, but probably

doesn’t make a huge difference in practice. What’s more important is that by computing

rERPs, you can use the same technique to analyze categorical effects, linear effects, non-

linear effects. (In fact, Figure 4.6a, b, c, and Figure 4.7a and b were all produced by the

exact some software routine, with the only thing changed being the matrix of predictor

values xji that it was given as input.) Furthermore, in situations where it would be useful,

these techniques can all be combined, or further bells and whistles added (such as those

described in the next chapter). So, for example, we can have linear factors as controls on

our non-linear rERP estimate, or even fit multiple non-linear effects simultaneously. In

that case, the overall predicted ERP for any particular stimulus would be calculated by

reading out the particular row of each rERP image which corresponded to this stimulus’s

properties, and adding these rows together, just as in Figure 4.2.

In Figure 4.6, in order to facilitate comparison with the linear model, we used

a small number of basis functions, which has the effect of strongly smoothing the data.

To demonstrate how changing the size of our basis function set affects our results, Fig-

ure 4.7 repeats this analysis with ten times as many basis functions, and as you see, this

produces pictures which are both more detailed and noisier.

More sophisticated regression strategies can make this trade-off by automatically

optimizing some measure of overfitting based on the data itself (Wood, 2004, 2006),
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and are currently our preferred method for fitting such models, at least when appropri-

ate software is available. These techniques have previously been applied to EEG by

Hendrix (2009), Tremblay (2009), and Tremblay and Baayen (2010). Besides using au-

tomatic smoothness selection, the main difference between their approach and the one

described here is that they use two-dimensional splines that are functions of both their

factor of interest (such as RT) and also latency. To understand this distinction, consider

Figure 4.6b. In this figure, each column of data has been smoothed by fitting splines

that are functions of RT, but as you move across rows, the values can potentially change

in arbitrary ways, since a new separate set of splines was fit at each latency. We have,

in effect, treated latency as a categorical variable, with every latency given a bin to it-

self, and we can think of these figures as showing how the non-linear interaction of

latency with RT affects scalp potential. They, instead, use a two-dimensional spline ba-

sis which smooths across both columns (RT) and rows (latency). We are not convinced

that adding latency smoothing is useful. As can be seen from our figures, even without

latency smoothing we generally do not see radical changes as we move across rows of

the figure, simply because this is not supported by the data; additional smoothing does

not seem necessary. On the other hand, it would carry risks; it is effectively a form of

low-pass filtering, and like any low-pass filtering, might distort the temporal structure

of our data, for instance by creating the appearance of an effect starting earlier than it

actually does (Luck, 2005). And finally, we know that ERPs are usually more wiggly

immediately after a stimulus is presented (e.g., in the N1/P1 complex), and are smoother

later in the epoch. Current methods for automatic smoothness selection apply a uniform

criterion across the epoch, which does not seem appropriate for ERP data. Indeed, they

avoid this issue by performing separate analyses within multiple short epochs (0–250

ms post-stimulus, 200–450 ms, etc.), allowing for different smoothness criteria in each;

but one might just as well take this further yet and analyze each latency separately, as we

suggest. We do, however, return to this idea of treating latency as a categorical predictor

in the next chapter, though for other purposes.
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Figure 4.7: For techniques which can detect non-linear effects, we have a trade-off to
make. Higher degrees of smoothing produce more stable estimates; but they may also
hide structure present in the data. To demonstrate the effect of this change, we repeat
the analyses from Figure 4.6, but with less smoothing. (a) Regression using 50 step
functions as our basis set. (b) Regression using a cubic B-spline basis set with with
50 degreees of freedom. (c) An ERP image for comparison (smoothed by a gaussian-
weighted moving average with σ = 10 trials).
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4.4 Further considerations

It should be clear, now, how the rERP approach works to analyze both simple

and complex designs. But there is more to ERP analysis than just averaging, and here

we discuss how the rERP approach interacts with some of these ancillary issues.

4.4.1 Baselining

Because the potential at any scalp electrode tends to drift over time, and because

we are generally interested in how brain activity changes response to some particular

event, when computing ERPs we usually subtract off the average potential observed

during some short pre-event time-window. This is known as baselining. The same logic

still applies when using regression in place of averaging, so we recommend that you

continue to baseline as normal.

There are two slightly different procedures you might use to accomplish this.

You could subtract off the baseline from each epoch, and then regress, or you could

regress first, and then subtract off the baseline from each of the resulting β waveforms.

When it comes to traditional average, this is a distinction without a difference, since

either procedure produces the same results. Surprisingly, perhaps, the same holds true

for the pointwise least-squares technique described in this paper — you are free to base-

line either before or after regressing, and will achieve the same results either way (see

Appendix for proof).

4.4.2 Filtering

It is sometimes useful to apply a digital filter — usually low-pass — to reduce

the effect of artifacts like muscle activity on the ERP. Luck (2005) recommends that this

kind of filtering should be applied only for visualization purposes. Conveniently, it turns

out that for traditional ERPs, it makes no difference whether we filter our data and then

average, or average our data and then filter it. This means that the workflow in which we

perform our slower and more data-intensive preprocessing and averaging once and then

try out different filter settings (while saving the raw ERPs for statistical analysis) is not

only more virtuous than filtering first, but also produces the same results more quickly.
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Fortunately, this same property again holds for the pointwise rERPs described in

this chapter: it makes no difference whether you filter and then regress, or regress and

then filter (see Appendix). Therefore we recommend that you always perform regression

on the raw EEG data, before any digital filtering is applied.

4.4.3 Significance testing and averaging over windows

At present, the most common approach for performing statistical tests on ERP

data is to first calculate single-subject ERPs, then pick a time window for analysis, and

compute the average amplitude of the ERP over the time window, which for each subject

results in a single number per condition and channel. After calculating these numbers

for each subject, they are entered in an ANOVA, with condition and channel entered as

factors.

This approach can be applied straightforwardly to rERPs. We have two choices:

either we can average over the β values in some time-window directly, or, if we want

to compare two conditions that aren’t straightforwardly represented by a single β wave-

form apiece, we can combine several β waveforms together as in Figure 4.2 to produce

a predicted ERP for each of the conditions we want to compare, and then average over

our time-window in the predicted ERP.7 Either way, everything works pretty much the

same way as it does with analyzing traditional ERPs. Let’s call this method 1.

There is another approach which might seem tempting, now that we’re using

regression, which is to take use regression’s standard hypothesis testing tools, such as t

and F tests. It’s not clear that this would serve much use, though, for the same reason

that when analyzing conventional ERPs, we don’t often use t tests to compare our aver-

ages: there just isn’t much power to detect an effect at a single time point, and then even

if there were, we’d still have to come up with some way to combine our results from

multiple subjects.

Still, if we are intent on using regression to perform our statistics, then we can

press on to overcome these difficulties. The first problem, the lack of power, comes

7Sometimes people recommend playing complicated games with factorial coding schemes in order to
rearrange a model so that its βs will straightforwardly represent the conditions you want to compare. For
our present purposes this would be a waste of time, since the suggested method will produce the exact
same result with much less bother.
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from entering individual time points into our regression. To overcome this, we could

calculate the average amplitude within some time-window of interest in each individual

trial, and then enter these averages into regression instead. Then, we need some way to

make inferences across subjects. Within the regression framework, there are two stan-

dard options for doing this. The more traditional method is to first perform a standard

regression within each subject, and then treat the resulting regression coefficients as a

new set of data, and enter them into a t-test or ANOVA (Lorch & Myers, 1990). Let’s

call this method 2. The more modern approach (method 3) would be to use mixed-

effects regression instead of standard least squares (Baayen, Davidson, & Bates, 2008).

To our knowledge, two groups have previously used this general approach for EEG

analysis, both choosing to use mixed-effects regression for generalizing across subjects

(Dambacher et al., 2006; Amsel, 2011).

Mixed-effects models have many potential benefits, but also require more so-

phistication on the part of their users: at the present time, there does not yet exist a

single standard method for extracting p values from such models, and all of the methods

which do currently exist can yield highly anti-conservative results when used without

proper precautions (Barr, Levy, Scheepers, & Tily, 2011). We fully expect that these

issues will be resolved in time, and mixed-effect models will become a standard tool

for EEG analysis; but for now, sticking to the more traditional method is also perfectly

justifiable.

So, if we put aside method 3 for now, then we should ask whether method 2 has

any advantage over method 1. The answer is no — in fact, though it may not be obvious

at first, these methods are identical! The reason is that, just like baselining and filtering,

calculating the average amplitude within a window is an operation that can be performed

either before or after regression, with identical results (see Appendix); therefore we end

up entering the exact same numbers into our ANOVA either way. So this method isn’t

just justified by the weight of ERP tradition; it’s also the most straightforward way to

perform repeated-measures regression analysis.

Certainly it will be possible to come up with more sophisticated approaches, but

we have to be careful. Under almost any conditions, least-squares regression will pro-

duce unbiased estimates that, given sufficient data, will reliably converge to the correct
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answer. But that’s just for the βs; to get accurate p values, we need to make much more

stringent assumptions: that the noise is normally distributed, and that each noise term is

uncorrelated from all others, and that each noise term has the same variance. (Mixed-

effect models then add even more assumptions about the form of the inter-subject vari-

ability.) If these are violated, then our p values may be radically off. The next chapter

contains more discussion of how these issues apply to EEG analysis, along with a pro-

posal for handling these issues to produce more powerful hypothesis tests; but unless

you have a particular reasons to need this additional power, you won’t go far wrong

sticking with the traditional methods here.

4.4.4 Collinearity: Curse or blessing?

We mentioned above that we consider regression’s ability to handle collinearity

between predictors to be one of its great strengths. But we find that even those who use

regression regularly are often nervous or confused about how collinearity effects their

analyses, so it’s worth spending some time examining the details here.

First, what is collinearity? It’s often used to refer to two rather distinct phenom-

ena. The first is when we have predictors which are perfectly redundant with each other.

This can always be avoided by setting up our model properly; it’s usually caused by

some sort of error like, for example, accidentally entering the same predictor twice. It’s

easy to see why this would cause problems. Remember that by definition, least-squares

fitting finds whatever combination of β values results in a prediction which is closest to

the data. If we had only entered our predictor once, then least-squares might find that the

best possible predictions are obtained by assigning it a β value of 1. When we enter our

predictor twice, then we now have two β values, β1 and β2, and as long as β1 + β2 = 1,

the model will achieve this best possible prediction. We can get this prediction by set-

ting β1 = 1, β2 = 0, or β1 = 0, β2 = 1, or even β1 = 100, β2 = −99. That is, there

is no best possible set of βs; instead, there is an infinite collection of equally good βs,

and the least-squares fit is formally undefined. This is certainly a serious problem, and

probably the source of some of the dire warnings about collinearity that have entered the

experimental folklore, but we can always fix this kind of problem by fixing our model
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specification.8

What comes up more often in practice is the second kind of collinearity, when

some of our predictors are correlated, but not identical. The most important thing to

know about using such predictors is that least-squares linear regression works just fine

in their presence; in particular, it still produces efficient and unbiased estimates of the

β coefficients, just like it does for orthogonal designs. For example, suppose you have

two predictors, which are correlated with each other: “flurbiness”, which does affect

brain response, and “norbiness”, which does not. Unfortunately, we don’t know that

— as far as we’re concerned, either or both might affect the EEG. But if we enter both

as predictors into a regression model and fit it with sufficient data, we will find out:

our model will assign a significantly non-zero β coefficient to our predictor that codes

flurbiness, but not to our predictor that codes for norbiness.

This is not to say that this weaker form of collinearity has no effect at all — it has

several. Firstly, as we’ve already seen, adding collinear predictors into your model can

alter the β coefficients corresponding to other correlated predictors. Some references

view this as undesireable, but we don’t see why. In our example above, if we had only

entered norbiness as a predictor in our model, then of course linear regression would

correctly point out that there was a relationship between norbiness and EEG amplitude.

This is misleading, but inevitable — no statistical method can magically infer that we

have asked the wrong question. The wonderful thing is that once we add flurbiness to

our model, the effect attributed to norbiness goes away. This is only possible because

the effect attributed to one predictor (i.e., norbiness) can vary depending on which other

predictors (like flurbiness) are also entered into the model.

But this does raise the question of which predictors you should enter. The short

answer is, you should enter all the ones that might matter. Why? Well, it’s obvious why

adding more predictors might be helpful — it might prevent us from publishing a paper

declaring the important cognitive effects of norbiness, only to end up with egg on our

face once someone notices that we forgot to include the flurbiness control. But we might

8Another option is to use various variants on least-squares which resolve these ambiguities by arbi-
trarily picking one of the equally good sets of coefficients, such as the Lasso (Tibshirani, 1996). This is
fine if all you care about is making predictions and measuring overall goodness of fit, but if you want to
be able to interpret the β coefficients themselves then picking them arbitrarily raises substantial obstacles.
Therefore, we don’t recommend the use of such regression methods for EEG analysis.
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worry that there is a countervailing cost to adding more predictors; that — as per the

general rule we’ve seen several times now — the additional flexibility they afford will

make our estimates more noisy and unreliable.

To a certain extent this does happen, but the picture is more complicated than

in previous cases. The key to understanding how collinearity affects the stability of our

estimates is the variance inflation factor, or VIF. The VIF measures how the sampling

variance of one estimated β coefficient is affected by the presence of collinearity be-

tween its predictor and the other predictors in the model, and is equal to 1/(1 − R2)

(see, e.g., chapter 13 of Fox, 2008). The R2 here is not taken from the model we ac-

tually want to fit, but instead measures how much of the variance in this predictor can

be explained by the other predictors in our model. So if we have a model with just two

predictors, and the correlation between these two predictors is r = 0.5, then the VIF

will be 1/(1 − 0.52) = 1.33. In practical terms, what this number means is that if we

know that we would need, say, 60 trials in order to get an acceptably accurate estimate

of the ERP for a single predictor, then we need 60 × 1.33 = 80 trials to get acceptably

accurate estimates of the ERP to these two predictors. (In general, of course, if your

model has more than two predictors, you can’t just look at the pairwise correlations —

to compute the VIF you need to compute the full coefficient of determination R2 for

each predictor.)

The first conclusion we can draw from this is quite surprising: if we add addi-

tional uncorrelated predictors, then this has absolutely no effect on the noisiness of our

estimates. Any predictor in an orthogonal design has a VIF of 1, which means that we

can estimate a hundred parameters just as well as we can estimate one of them, from the

same amount of data. (Of course, it may be quite difficult to find a hundred predictors

which are all uncorrelated with each other!) Notice also that if we have two predictors

which are correlated with each other but both are uncorrelated with a third, then we will

need more data to estimate the effect of the first two predictors, but their presence in the

model will not affect estimates for the third predictor.

The second conclusion is that whenever we do encounter a VIF> 1, then we will

see it for multiple predictors at once — because correlation always goes two ways. This

is closely related to the underlying cause of variance inflation. Recall how when we had



100

two identical predictors, the model knew that their β coefficients should sum to one, but

could not distinguish between an option like β1 = 0, β2 = 1 and one like β1 = 100, β2 =

−99. When our predictors are not identical, but merely similar, then our model can

distinguish these cases — but the more similar (correlated) our predictors are, the more

difficulty it has in doing so. This has the effect of increasing the sampling variance for all

the involved βs, as measured by the VIF, and that extra variance manifests in a distinctive

way. In orthogonal designs, when we don’t have enough data, then we get noise our

estimates, but the noise in one β is independent of the noise in another. In designs

containing collinearity, when we don’t have enough data, the noise may produce strange,

structured behavior, in which different βs trade-off against each other in implausible

ways. (One classic sign of this kind of behavior is when one β is large and positive,

and another is large and negative.) This is fully expected within the theory of linear

regression, accounted for in ordinary statistical tests, and not really different in principle

from the ordinary noise we always expect to see when performing statistical estimation.

But when it comes time to interpret such designs, it’s important to keep an eye out for

this behavior.

And the third conclusion we can draw by examining the formula for the VIF is

that while correlation in your design does increase the amount of data you require, it

may still be tractable to disentangle the effects of quite highly correlated predictors. If

flurbiness and norbiness were correlated at the level of r = 0.7 (which, in our experi-

ence, would be on the high side for ordinary experimental materials), then we would

need to collect double the usual amount of data to distinguish them. This would be a

hassle but is probably not an insurmountable barrier. And in our own work, we have

successfully used regression to disentangle reading-time effects with predictors whose

correlation was r = 0.98 (Smith & Levy, 2010). This requires 25 times more data than

one would otherwise need, but in a corpus study this is quite achievable, and one of

the key advantages of regression is that it enables one to analyze relatively unstructured

data like corpora. Collinearity can still become a problem as the number of predictors

increases (each one adding just a bit to the R2 for all the others), and it is often wise

to compute the VIF while planning an experiment rather than waiting until the analysis

stage, but in most cases these issues should be manageable.
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Even so, there will of course be cases where the collinearity is too high, and we

cannot gather enough data to achieve tight estimates of our β parameters. Would this,

then, be a good time to toss out some predictors and simplify our model?

Certainly the temptation may be there, but it should be resisted. There are two

main cases we can see. First, the problematic predictors may be useful as controls in

your model, but not actually the target of your scientific study. For example, Hauk et al.

(2009) wished to include bigram and trigram word frequencies as controls in their analy-

sis. These factors are highly correlated with each other. To reduce this collinearity, they

decided to use PCA to produce a single new predictor that was roughly the average of

the two original frequency predictors, and entered that instead as their control. We have

no reason to think that this choice had any substantive effect on their results, but it was

completely unnecessary and potentially harmful; they would have done better to skip it

and include the original predictors directly. It’s true that the rERPs for highly-collinear

control factors will be very noisy and should not be trusted, but if you aren’t going to

interpret them anyway, then this is no problem. As we’ve seen above, this untrustworthi-

ness affects only the highly-collinear predictors. If your controls are strongly correlated

with each other, but only weakly correlated with the predictors that are the actual targets

of your analysis, then you can leave in all your control predictors without worrying that

their instability will infect your other βs. And while these predictors will not produce

useful estimates themselves, they will continue to provide a valuable control on those

βs, reducing the chance of finding spurious results due to confounding.

The other problematic case is when one or more of the factors that are the target

of your study are themselves too highly correlated with the other predictors in your

model to achieve usable estimates. This is the case in which it will be most tempting

to remove some other control factors “to increase power”. But if the presence of those

control factors means that you don’t have enough data to estimate your effect, then, well,

you don’t have enough data to estimate your effect. Technically speaking, removing

those control factors will indeed give you more statistical power, but it comes at the

expense of being able to distinguish between those controls and the factor you care

about. When you remove a control variable, what you’re saying is that you know a

priori that it has no effect; but if you know that, then why did you include it in the first
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place? And if it does have an effect, then that power you are gaining may be the power

to misattribute this effect to the factor you care about. Better to compute your VIFs

before you start gathering data, and if they show that you will have a problem, figure out

then how to add more trials or to reduce the collinearity in your stimuli.

So in general, there is little justification for ever removing predictors from your

model. Note in particular that we do not make an exception for removing predictors

which do not reach significance. As methodology papers will tell us over and over,

significance gives us some reason to believe in an effect’s existence, but insignificance

does not tell us that an effect does not exist — and in particular, it does not tell us that

this predictor is not providing an important control for other predictors in the model. It is

also entirely possible that if we have two predictors which are correlated with each other,

then either one will be significant when included individually, but when we include both

then neither reach significance. This is easy to interpret: it means that we have enough

data to see that at least one of these predictors has an effect, but not enough data to

distinguish which of them is truly responsible. This is useful information. Stepwise

regression techniques will generally pick one of these two predictors at random, which

is why they aren’t a very good tool for telling us which of a set of predictors are the

ones that really matter — when they aren’t sure, they make things up. This is fine if

your goal is model simplicity, and a simple model can be very useful if you’re trying

to predict the future in a practical way. If a medical researcher can accurately predict

cancer risk based on only 3 tests instead of 10, then that means that they can screen

patients more economically, and it doesn’t matter whether the tests they picked are the

most direct reflections of the underlying process, or merely confounded with them in a

useful way — these are the situations for which stepwise techniques were developed.

But in scientific research, we are usually interested in whether we can be certain that

some factor has an effect above and beyond any others which may be confounded with

it. The best way to answer that question is to simply fit our full model with all our

predictors in it, and then test and report the βs for whichever factors are of interest.

Finally, a few words on another response to collinearity that is sometimes used:

that of orthogonalizing predictors before fitting the model (e.g. Hauk et al., 2006; Rous-

selet et al., 2009). In this approach, we use PCA or a similar technique to replace our



103

original predictors with a new set of predictors which together span the same space, but

are themselves orthogonal to each other. This does produce a regression model where

all the VIFs are 1, which might seem like an improvement. However, because we had

to change our predictors to achieve this, this improvement is largely illusory. We can,

indeed, get more stable estimates of our βs — but we can no longer interpret those βs,

so what use is being able to estimate them precisely? And it is only the new βs that

are estimated more precisely: the new model will make exactly the same predictions as

the old model, and with exactly the same amount of noise. Any comparisons between

different stimuli which we compute in the new model will come out just as they did

in the old (the difference in how the stimuli are coded between the two models exactly

cancels out the difference in βs between the two models). So again, we see little reason

to recommend this technique; simply entering the predictors you care about unchanged

seems like the best standard approach.

4.4.5 Which statistic to use? β, R2, r, t, p, . . . ?

While our discussion has so far focused on β values as the output from fitting

a regression model, there are a large number of ancillary statistics that can also be ex-

tracted, and that most regression software will compute by default. Within EEG anal-

ysis, R2 has been taken as a measure of model fit, and differences in R2 (or its close

cousin the correlation coefficient r) have been used to infer differences in ERP activ-

ity between scalp locations (DeLong et al., 2005; Rousselet et al., 2008, 2010), across

time (Rousselet et al., 2008, 2009, 2010), and between different participant populations

(Rousselet et al., 2009, 2010). Regression models also allow one to calculate t and p

statistics, and in analyses of PET/fMRI data these are often plotted instead of β coef-

ficients. However, we have reservations about using these statistics in these ways with

EEG.

The R2 for a regression model is the percentage of variance which that model

explains; that is, it is the ratio between the power (µV2) of the estimated ERPs, and the

total power measured at the scalp, which is the sum of the power due to ERP effects and

the power due to background noise. As such, differences in R2 are difficult to interpret:

they might be caused by differences in the ERP to our stimuli, or they might be caused
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Figure 4.8: Average power (µV2) at each electrode from a 500 ms baseline interval in
the previously mentioned go/no-go task, for each of 7 participants. This is an estimate
of the residual background noise which forms a portion of the denominator when calcu-
lating R2 or r values. In each case, noise power varies by at least a factor of 2 over the
scalp (and usually by much more), which means that R2 will vary by almost as much,
even in the absence of any real differences in effect topography. Different participants
have substantially different different spatial distributions, and substantially different to-
tal power, which means that R2 maps are also incomparable between participants.
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by differences in the background noise. The simple correlation coefficient r is derived

from a similar ratio, and has the same problem. Intuitively, there is good reason to worry

that background noise might vary substantially over the scalp or between participants,

because we know that there exist powerful noise sources with specific localization, such

as alpha or muscle artifact. To check this more rigorously, we extracted 500 ms of

pre-stimulus activity from the 7 participants used to demonstrate non-linear regression

(Figures 4.6 and 4.7), and for each we computed the average power present in each

scalp electrode. The results are shown in Figure 4.8. These are reasonably clean and

artifact-free data typical of that analyzed in ERP experiments, and represent an estimate

of baseline brain activity in the absence of any stimulus. They contain huge amounts

of variation. Not only does power vary greatly over the scalp within each individual,

and overall vary greatly between individuals, but the scalp distribution varies greatly

between individuals as well.

This presents a substantial potential confound for our ability to interpret R2 or r,

since any differences we see may be due to irrelevant differences in background noise

rather than differences in event-related brain activity. Such differences will not necessar-

ily arise in all cases (for instance, compare Figure 1 of DeLong et al., 2005 to DeLong,

Urbach, Groppe, & Kutas, 2011, Figure 2), and when they do arise, they may them-

selves be of scientific interest. But if our goal is to understand how EEG power varies

between conditions or participant groups, then it makes more sense to perform one com-

putation to estimate the ERP effects alone (i.e., the βs from an rERP analysis), and a

second to estimate changes in non-time-locked noise (e.g., by comparing baseline noise

between participants, or performing an event-related spectral perturbation (ERSP) anal-

ysis, Makeig, 1993). The ratio between these quantities is of interest mostly because

of its ability to tell us how well our measurement tools are working (e.g., measuring

signal-to-noise ratio); it isn’t a reliable tool for answering questions about the brain’s

activity itself.

This issue of background noise also makes R2 and r less meaningful for EEG

analysis than in some other situations. With EEG, we know a priori that some substantial

part of the total variance is not explicable by any model of how the brain processes our

stimuli, simply because that variance arises from other processes which are indifferent
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to and independent of our stimuli. Therefore even good very good models of event-

related brain processes will still produce rather low R2 values, and this is in no way a

strike against them.

Finally, a brief comment on the occasional practice of dividing trials up into a

number of bins (e.g., 10 bins by deciles), estimating ERP amplitude within each bin,

entering these amplitudes into a regression analysis, and then computing R2 or r for this

final regression (e.g., DeLong et al., 2005). The practice of averaging before regression

is not particularly useful — as we’ve seen, the averaging itself is a kind of non-linear

regression and useful in its own right, but if our end goal is to perform a linear regression

then binning first is somewhat unprincipled and unlikely to affect the outcome much.

But it will have a very large effect on the computed R2. Consider that if we go to the

extreme of using only two bins, then we will have just two data points to enter into the

regression, and it is always possible to draw a line through two points. Therefore a linear

model can explain all of the variance; we will always find that R2 = 1. As we add more

bins, the number of data points in each bin goes down, and so the average over each bin

becomes noiser, and the R2 drops. Eventually, we’re left with individual data points,

and the rather low R2 that we get from the rERP models discussed here. In between

these limits, we can achieve any R2 we like simply by choosing how many bins to use.

So while a scatter-plot of the individual points can be highly informative, the actual R2

values derived from such regressions are not meaningful.

We aren’t saying thatR2 can never be useful — for instance, it’s a perfectly good

statistic for doing model comparison, and there are good reasons to want to know what

our signal-to-noise ratio looks like, even if it isn’t the primary goal of research. We are

merely arguing that one must consider whether it is the appropriate tool for the situation

at hand.

Turning to t and p values, we face a similar set of issues. These statistics can

certainly be useful for determining whether an effect exists; that is, literally, what they’re

designed for. But as general tools for understanding the brain’s activity, they have the

same limitation as R2, in that they are affected just as much by the strength of the

background noise as they are by the signal. In addition to this, they are also affected by

our sample size, meaning that unlike even R2, t and p values are not comparable across
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studies. In PET and fMRI studies, it is common to plot t or p scores directly. These

statistics are good at determining the existence of effects, so if the goal of analysis is to

determine whether there is or is not an effect in each voxel individually, then examining

them makes perfect sense. But in EEG analysis, we know a priori that if there is any

effect at all, then volume conduction will ensure that it is present to some extent in most

of our electrodes (Lutzenberger, Elbert, & Rockstroh, 1987).

So in EEG, unlike PET/fMRI, there are generally two questions we are interested

in. First, is there an effect present at all? At this stage, whether an effect is present at

one electrode versus another is almost never of interest, though we may still perform

a significance test at each electrode for computational convenience, so that if we find

significance at at least one electrode we can conclude that some effect is in fact present.

Once we know that there’s an effect, we ask our second question: what is its distribution

over the scalp? At this stage, again, checking for significance at individual electrodes is

not particularly useful; it may give some coarse picture of where the effect is strong, but

we’re just as interested in knowing where it is weak, and, more importantly, in exactly

how strong or weak it is at each point. There’s a specific way of defining effect strength

across the scalp that has good theoretical justification. According to the mathematics of

volume conduction, a certain amount of the electrical activity generated by each point

in the brain will project linearly to each point on the scalp. That is, there is some

fixed multiplicative scaling factor that determines how strongly any given activity at

a particular source will appear at each electrode. If we could determine these scaling

factors, then they would tell us everything that we could possibly learn about the source’s

location using EEG. So finding these factors is useful both for intuitive reasoning about

different components and for more formal localization procedures.

In practice, we can’t quite hope to figure out the actual scaling factors, since we

do not know how strong the source activity is; this makes it impossible to distinguish

between a strong source with small scaling factors, or a weak source with strong scaling

factors. But what we can do is estimate these scaling factors up to a multiplicative

constant. To do this, we need some statistic that increases by a factor of s whenever

the event-related portion of the EEG signal increases by a factor of s; then we could

estimate this statistic for each electrode. Conveniently, slope rERPs are just such a
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statistic, and the β values from rERP regression are therefore estimates of the forward

projection constants implied by volume conduction theory. This is why we suggest that

the βs from linear rERPs are the most appropriate tool for most everyday ERP analysis

needs.

If we’re doing non-linear regression, then this becomes more complicated, since

we no longer have a single β describing effect slope at each electrode. However, non-

linearities add another interesting potential source of information to our understanding

of effect distributions. Suppose that there were only one source present whose activity

varied with our stimulus property. Whatever that source’s response curve looks like,

it must be projected unchanged (except for uniform scaling) to all of our scalp elec-

trodes. That is, you can’t get two different non-linearities from a single source. If we

see different non-linearities at different points on the scalp, then, this is strong evidence

that we are observing are multiple sources with different sensitivities to our stimuli.

In fact, since the non-linearities observed at the scalp must be weighted sums of the

non-linearities present at the source, the way our estimated non-linearities vary across

the scalp contains some kind of information about the response and distribution of the

underlying sources. An open question is whether it would be possible to decode this in-

formation somehow to learn about the individual sources, possibly via a technique such

as independent component analysis (Makeig, Bell, Jung, & Sejnowski, 1996).

4.5 Discussion

We’ve only scratched the surface of the regression literature here; there’s exten-

sive work on such topics as mixed-effects regression, robust regression, and so forth,

any of which may prove valuable for work on EEG. We hope that another benefit of our

framework is that it will enable such techniques to be adapted when appropriate. An-

other potential area for future work is the application of these techniques to areas besides

ERP analysis. For instance, we expect that most of these techniques could be applied

unchanged to MEG analysis, and even within EEG, there are a variety of other analysis

strategies which might benefit from these tools. For example, independent component

analysis (Makeig et al., 1996) begins by decomposing single-trial scalp potential into
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traces of component activation. These activations are then analyzed in various ways,

for instance by dividing them into bins and averaging, just as with standard ERPs; they

could just as well be entered into a regression model as described here, and with similar

benefits. Likewise, in time-frequency analysis a standard measure is the event-related

spectral perturbation (ERSP; Makeig, 1993), which is calculated by transforming single

trial data to the time-frequency domain, discarding phase information, and then averag-

ing. This averaging too could be replaced by regression.

But in this paper, we’ve instead focused on laying out the basic principles and

considerations for extending classic ERP analysis to include least-squares regression

techniques. These techniques are not themselves new; they been used extensively for

centuries, and standard ERP averaging is itself an example of this methodology. For

each of the individual situations we consider, either the method we propose has been

been previously suggested independently, or a close variant of it has. But what hasn’t

been appreciated is that regression provides a single framework that encompasses each

of these methods, unifies them conceptually, and lets us choose in a principled way how

to apply them to each situation that arises in practice. Furthermore, bringing them into

the same framework lets us mix-and-match the capabilities of each technique to adapt

to our specific situation, and these adaptations are derived automatically by the least-

squares fitting process; all we have to do is describe our design by defining a set of

predictors.

While the primary value of these models is for analyzing complex data sets

which contain confounding and which in practice may arise from observational/corpus-

type work rather than from designed experiments, we are not advocating that anyone

give up orthogonal designs for ones containing collinearity, or give up designed experi-

ments for corpus studies. As we learned from our examination of the variance inflation

factor, orthogonal designs extract more information from a given set of data than designs

containing collinearity (though an orthogonal design which contains continuous predic-

tors may tell you even more than one which uses dichotimization to produce categorical

predictors, Cohen, 1983). A proper randomized experiment can tell you things about

causality that a corpus study cannot. But this only works when you can randomly assign

factors to conditions while holding everything else constant, and there arise situations
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where this is prohibitively difficult or undesireable for other reasons. In our field of lan-

guage research, there are so many potentially relevant factors, all correlated with each

other, that it is standard to pick some subset of these factors to control experimentally,

and even that is only done approximately. Furthermore, even if it were easy to con-

trol these factors exactly, doing so would force us to choose very unusual words, which

might distort our results in other ways (Blalock, 1967). And while only a randomized

experiment lets us infer causality, only large studies using naturalistic stimuli let us ex-

amine how a wide variety of factors might interact in real-world situations (since the

world is, of course, not orthogonal).

Therefore, we see these kinds of research as complementary, and the advantage

of a flexible analysis technique is that it lets us use whatever design is most appropriate

for the question at hand, rather than redefining our questions to match our tools.
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4.A Derivations for baselining, filtering, windowing

Here we give the mathematical derivations which show that many standard op-

erations — including baselining, filtering, and taking averages over latency windows —

can be performed either on individual epochs before using least-squares regression to

estimate rERPs, or else on the resulting rERPs themselves, and the exact same result

will be obtained either way.

This is most clear if we switch to matrix notation for writing our regression

model. Instead of

yi = β1x1i + β2x2i + · · ·+ noisei
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we can write the mathematically identical expression

y = Xβ + noise. (∗)

Here we use the convention that column vectors are written in bold, while matrices are

written in uppercase; the vectors are

y =< y1, . . . , yn >
T

β =< β1, . . . , βn >
T

noise =< noise1, . . . , noisen >T

and X is the design matrix, i.e., a matrix formed by putting the values of x1i into the first

column, x2i into the second, and so on:

Xij = xji.

The least-squares solution to equation (∗) can now be written as

β = (XTX)−1XTy.

One useful thing about this notation is that if we are performing m regressions

with the same predictors but different data, then we can combine these into a single

formula. Each regression has a different column vector of data y. If we combine these

to be the columns of a single large matrix Y , then we can write

Y = XB + Noise.

where B (the uppercase form of β) and Noise are now matrices. There’s nothing par-

ticularly deep about combining the regression models in this way; it’s basically just a

notational trick, where we use the standard rules of linear algebra to express that we

want to fit m regression models in parallel. And here, too, we can write a single formula
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for the least-squares solution to all of these regressions at once:

B = (XTX)−1XTY.

Again, if you work through the matrix multiplications, this is just saying that the single-

regression equation above should be applied to each column of Y separately.

But this final expression is very useful when it comes to thinking about how the

rERP is affected by these operations. Recall that y =< y1, . . . , yn >
T are the values

of the EEG at a single electrode and latency but on different trials. Within a single

electrode we have one y vector for each latency, and we can collect these together to

make a single Y matrix for that electrode. If we order these column vectors by latency

then — this is critical — each row of Y will contain the raw EEG data from a single

epoch.

The key fact about the operations we consider here is that they transform each

epoch of data by applying a linear transformation to that epoch alone. So they take our

matrix Y , and replace each row by a linear transformation of that row. That means that

they can be written as a right-multiplication of our Y matrix by another matrix. For

averaging over a window containing k points, this matrix would have a single column,

with entries < 0, . . . , 0, 1/k, . . . , 1/k, 0, . . . , 0 >T . We can construct the matrix that per-

forms baseline correction by starting with a matrix that has n columns, each of which

computes the average of the baseline window, and subtracting it off from an n×n iden-

tity matrix. And filtering, which operates by replacing each point in an epoch with some

linear combination of the points in that epoch, would use a matrix in which each column

contained a shifted copy of the filter’s impulse response function. In any case, let’s call

the matrix which performs the desired operation F .

If we first perform this transformation on the raw data and then enter these trans-

formed values — Y F , in matrix notation — into a regression, we get a matrix of new β

values, which we denote BF :

BF = (XTX)−1XT (Y F ).

Alternatively, we could first compute the matrix of rERP values, B, and then apply our
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transformation to these β values directly, which in matrix notation would be written

BF .

So the claim is that it doesn’t matter whether we average/filter our raw data, or

instead average/filter our resulting rERP; that is, we claim that BF = BF . But this is

now easy to see, simply by associativity of matrix multiplication:

BF = (XTX)−1XT (Y F ) =
(
(XTX)−1XTY )

)
F = BF.
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Chapter 5

Regression-based ERP analysis: II.

Continuous-time techniques

In the previous chapter, we explained the fundamentals of using regression mod-

els to estimate ERPs (or rERPs), which allowed us to analyze designs containing contin-

uous and partially founded factors. Here, we extend this approach further, enabling it to

properly estimate the underlying form of ERPs which overlap in time, and to explicitly

handle the temporal correlations present in the EEG background noise.

This latter change has the potential to produce a more efficient statistical esti-

mator of the rERP, i.e., one which produces better estimates of rERPs from fewer data,

and also enable the use of parametric statistical tests. One the advantages of rERPs is

that they allow us to analyze rich designs that contain many factors of interest — but

the use of such designs creates a difficulty for statistical testing. When there are many

interesting hypotheses to test, it isn’t enough to check for p < 0.05 — we must use some

form of multiple comparison correction (Groppe, Urbach, & Kutas, in press), which re-

quire much stricter significance thresholds. More powerful statistics, therefore, may be

a practical necessity for enabling the analysis of large, rich data sets such as those that

arise in language research. However, the complex structure of the EEG signal means

that using these tests successfully may prove challenging in practice; here we explore

the theory underlying them, and their prospects for future use.

118
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5.1 One regression for all latencies

Previously, we calculated rERPs by fitting a separate regression model for each

latency, and then collected the resulting β coefficients from each model together to form

individual waveforms. The basic idea that enables the extensions described in this chap-

ter is to combine these many regression models into a single, giant model. We do this

by using the same trick which we used in the ‘dummy coding’ example in the previ-

ous chapter. Recall that there, we started by fitting model containing only an intercept

term (xi = 1), and found that the resulting coefficient β was equal to the average of

the data we entered into the model. This let us compute ERPs to each of k conditions

by taking the subset of our trials that occurred in that condition, and fitting our model

on that subset. The dummy coding idea was to instead fit a single model on all of the

data, where we defined new predictors x1i, x2i, . . . , xki, such that xji = xi = 1 if the

data point yi is one of the data points which was included in the jth subset of the data,

and zero otherwise. Because each of the resulting predictors was non-zero on different,

non-overlapping subsets of the data, this produced exactly the same fitted coefficients

β1, . . . , βk as we would have gotten by fitting the original k separate models.

But in all of the above, we were still working on that subset of our data which

was measured at a single latency relative to an event, and then repeating our model

fitting at each latency. Now, assume we have some model we’d like to fit, defined by

predictors x1i, . . . , xki chosen as per the discussion in the previous chapter, and we’d

now like to combine all of our data into a single model. To do this, we define a new

set of k ×m predictors, where m is the number of distinct measured latencies that fall

within our chosen epoch. These predictors are each defined to take on the same value as

one of the old predictors for data which was measured at one particular latency, and zero

otherwise. For instance, with a 250 Hz sampling rate, we might have (see Figure 5.1):

x1 at 0 ms, i =

x1i if yi was measured 0 ms after an event

0 otherwise

x1 at 4 ms, i =

x1i if yi was measured 4 ms after an event

0 otherwise
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Figure 5.1: Going from one regression model for each latency (previous chapter) to a
combined regression model for all latencies (this chapter). On the left, we see three of
the models that in the previous chapter we would have fit to different subsets of our data.
(The particular latencies shown reflect a 250 Hz sampling rate.) On the right, we see
how they are combined by, for each model, replacing each predictor by a new one that
takes on the same values on the subset of data that it previously applied to, and zero
elsewhere.

...

x2 at 0 ms, i =

x2i if yi was measured 0 ms after an event

0 otherwise

x2 at 4 ms, i =

x2i if yi was measured 4 ms after an event

0 otherwise

...

One way to think about this is that we are taking latency as being a categorical factor,

and then defining a new set of predictors which represent the interaction of latency with

each of our original predictors.

The same reasoning as before now applies: because each β only affects the

model’s predictions for the subset of the data which occurred at a single latency, the

estimated β coefficients we derive by fitting this model to all of our data will match

exactly to the β coefficients derived from fitting our original collection of models to

subsets of our data. (For instance, β1 at 0 ms will match β1 as fit to the 0 ms data, while

β1 at 4 ms will match β1 fit on the 4 ms data.) On the one hand, this makes it clear that this
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is a statistically acceptable thing to do. On the other, it may raise the question of why we

should bother doing this in the first place. The answer, of course, is that it allows several

new extensions. When these extensions aren’t used, then the rERPs in this chapter are

identical to the ones in the previous chapter.

5.1.1 A note on baselining and filtering

Before we discuss these extensions and their advantages, though, a warning is

in order: while most results described in the previous chapter still hold true for the

combined models we discuss here, one does not. Previously, linear transformations on

individual epochs such as baselining or filtering could be applied either on the raw data,

or on the resulting rERP, with identical results. When using the extensions described

here, the proof given in the previous chapter’s Appendix does not go through, and it can

make a difference when you filter or baseline. In this chapter, we will perform baselining

after rERP estimation in those cases where it makes sense to do so.

5.2 Overlap correction

The ERP to any given event may be quite long, persisting for a second or more.

When events occur in quick succession, then, their ERPs necessarily overlap. This

makes it difficult to determine the actual ERP to any individual event. One approach

to handling this problem is to simply not present stimuli in quick succession, but this

is not always a viable option, both because it can greatly reduce the amount of data

that can be gathered in a practical amount of time, and because often it is necessary to

present stimuli more quickly than once per second in order to elicit the desired brain

response. For example: (a) reading at one word per second is quite unnatural, (b) se-

lective attention tasks are performed better with faster rates of presentation (Woldorff,

1993), (c) response-locked potentials in a speeded reaction time task necessarily occur

soon after stimulus presentation, and (d) we may wish to use presentation rate itself as

an independent variable (e.g. Kutas, Lindamood, & Hillyard, 1984).

In some cases the resulting overlap can still be tolerated, but in others it may

be very important to correct for. For instance, we may wish present two stimuli in
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quick succession, and then investigate how the processing of the second stimulus varies

depending on what stimulus was presented first (e.g., there may be priming effects).

But even if we do find such differences in the averaged ERP, it may be difficult to know

whether these are caused by differences in processing of the second stimulus, versus lin-

gering differences in the brain response to the various first stimuli themselves (Woldorff,

1993). Another example where overlap can cause critical difficulties is if there are se-

quential dependencies in your stimulus sequence, in which case a naive analysis may

detect spurious effects. This was the problem which initially motivated this investi-

gation: a straightforward rERP analysis of sentences presented in RSVP was finding

significant effects of word frequency at 0 ms, which is clearly impossible. So what went

wrong? In natural language, the frequencies of adjacent words are correlated, so the

overlapping effect of the previous word was introducing an unexpected, uncontrolled

confound.

Therefore it would be convenient to have a analytical technique that could take

EEG recorded to events presented in near temporal proximity, and from it estimate what

the ERPs to individual events were, correcting for any overlap. This necessarily requires

some assumption about what happens when two ERPs overlap, and here we make the

simplest assumption that they sum linearly. Aside from providing computational con-

venience, this assumption seems physiologically plausible in some cases (e.g., if the

overlapping components arise from distinct and non-interacting cortical sources). And

even when it isn’t plausible, it still provides a useful baseline: we can use our technique

to compute what ERPs would have to be summed to best reproduce some observed ef-

fect, and if these do not match the ERPs observed in isolated presentation, or if there

are systematic patterns in the data that are not captured by this simple linear summation,

then this is evidence that there must be some more complex interaction between the

brain processes triggered by our adjacent events.

But how can we estimate these ERPs? The combined regression model actually

makes this easy. Suppose we make a measurement of scalp potential yi at some par-

ticular time, and suppose that we know that some event happened 100 ms before our

measurement, and that another event happened 300 ms before our measurement. Then

according to our linearity assumption, yi is the sum of the ERP to the first event at 100
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ms latency, the ERP to the second event at 300 ms latency, and background noise:

yi = First event ERPat 100 ms + Second event ERPat 300 ms + noisei

According to the rERP setup, these ERPs can each be written as the sum of the some β

coefficients and event-specific predictor values:

yi = β1 at 100 ms, i x1 at 100 ms for first event, i + · · ·+ βk at 100 ms, i xk at 100 ms for first event, i

+ β1 at 300 ms, i x1 at 300 ms for second event, i + · · ·+ βk at 300 ms, i xk at 300 ms for second event, i

+ noisei.

In the previous section, we observed that only one set of predictors would be non-zero

for any given yi. That assumed a standard ERP experimental design, in which each

epoch is treated as an independent, non-overlapping measurement. If overlapping is

present, then that means that multiple ERPs are contributing to individual yis, and to

account for this, we can in the combined model simply set the appropriate sets of pre-

dictors to be non-zero simultaneously. Then the least-squares fitting process will, as

usual, automatically do the grunt work of pulling apart the variance in the data and at-

tributing it to the appropriate predictors. (An equivalent procedure has been proposed

for estimating hemodynamic response functions in the context of event-related fMRI:

Burock, Buckner, Woldorff, Rosen, & Dale, 1998.)

It may be useful to compare this to another approach for handling confounding

due to sequential correlations in our stimuli, which is a problem that also arises in,

for example, reading time studies. There, we sometimes include as predictors both

properties of the current word and properties of the previous one or more words. We

could do this in our rERP analysis as well. For instance, suppose that we present a

word every 300 ms exactly, and we do an rERP analysis that includes both current

word frequency and previous word frequency, without the kind of overlap correction

described here. This will work to some extent, but has a somewhat disturbing feature.

The estimated effect of the current word’s frequency at 600 ms may be totally unlike the

estimated effect of the previous word’s frequency at 300 ms — which is 600 ms after that

word was presented. It makes no sense that the same measurement of the scalp potential
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should be entered at two different times into the same analysis, and be explained as

arising due to two completely different ERP effects triggered by a single event. The

solution is to enforce a constraint on our model-fitting process that the previous-word

effect at 300 ms should be the same as the current word effect at 600 ms — then that

constraint produces exactly the procedure described here.

As usual, performing regression requires that the information to distinguish be-

tween our predictors be present in the data. If we have only one type of stimulus, and we

present it every 100 ms exactly, then our data will simply not be able to tell us whether

some deflection occurs at 100 ms latency or 200 ms latency, because these are always

observed together. In the regression model, this manifests as our old friend collinearity

— because of the regularity of our presentation schedule, xj at 100 ms, i and xj at 200 ms, i will

be non-zero at exactly the same times, and because we have only one type of stimulus,

when they are non-zero they will have the same values. Therefore they will be perfectly

collinear. To get accurate estimates, we need to break this collinearity somehow, and

there are two options. One is to jitter our presentation (which will alter the pattern of

zeros). The other is to vary our stimuli in such a way that the values of xji for adja-

cent stimuli are relatively uncorrelated. Either technique can work on its own; when

used together, they complement each other. Note that in theory we do not need to ever

observe any non-overlapping ERPs — we just need to make sure that the overlapping

is not perfectly consistent. In fact, you can never even achieve collinearity in practice,

because the first and last stimuli will necessarily break the pattern. But if this is the only

thing breaking collinearity, then you effectively have only one or two epochs worth of

data, which is unlikely to produce satisfactory results.

Most models will include an intercept term, which will always, by definition, be

perfectly correlated between adjacent items. If the goal of analysis is to understand the

effects of other predictors, then it may not be important to get an accurate estimate of

the intercept rERP; recall from our previous discussion of collinearity that even if some

predictors are highly correlated with each other, this does not necessarily affect our

ability to estimate the effects of other predictors in the model. If, however, an accurate

estimate of the overlap-corrected intercept rERP is important, then you will have to rely

on jitter to make this possible.
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The resulting β values and any predicted ERPs made from them can be plotted,

filtered, and entered into statistical analysis just like any other rERP or ERP estimate.

5.2.1 Simulation

To demonstrate this method, we simulated an experiment in which a continuous

train of stimuli are presented, with each SOA randomly selected to fall between tmin and

tmax ms, in increments of 16.7 ms (which simulates the possible SOAs for visual pre-

sention using a monitor with a fixed 60 Hz refresh rate). We time-locked a known ERP

waveform to each stimulus, and then summed these time-shifted ERPs with simulated

EEG background noise. (This background noise was generated by taking the Fourier

transform of a stretch of real EEG data, randomly shuffling the phase components, and

then transforming back to the time domain.) The question is, how accurately can we

reconstruct our known ERP waveform given only this noisy data?

In Simulation 1, we set tmin = 200 ms, tmax = 400 ms, and each stimulus was

assumed to produce an identical ERP. As discussed above, this is something of a worst

case for our technique, since in real experiments there will usually be some variation

between stimuli, which our method is able to exploit. Figure 5.2 shows the true ERP

that we embedded in the data, and our attempts to reconstruct it from varying amounts

of data, using both the conventional time-locked averaging and our overlap-corrected

rERP technique. (In both cases, we applied baseline correction to the final curves before

plotting.) Averaging converges to a stable answer on much fewer data — but it is the

wrong answer, as components from previous and successive trials appear overlaid on the

estimated ERP. The overlap-corrected rERP requires more data, but accurately estimates

the correct ERP waveform — and since the large degree of overlap means that these

trials come quite quickly, even the bottom row of our figure is based on only ten minutes

worth of simulated EEG.

In Simulation 2, we set tmin = tmax = 300 ms, i.e., we used no jitter. Instead, we

simulated a continuous factor with a linear effect on the ERP. This factor was randomly

assigned a value between 0 and 2 independently for each simulated stimulus, and the

simulated ERP for each stimulus was multiplied by this factor before being summed

with the overlapping ERPs and background noise. As discussed above, this is sufficient
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True ERP

Trials Data (min) ERP from averaging Overlap-corrected rERP

100 0.5

RMSE: 6.45 µV

RMSE: 8.49 µV

500 2.5
RMSE: 5.87 µV RMSE: 3.36 µV

1000 5.0
RMSE: 5.82 µV

RMSE: 1.79 µV

2000 10
RMSE: 5.82 µV

RMSE: 1.06 µV

Figure 5.2: Simulation 1: Conventional averaged ERPs, and overlap-corrected rERPs,
estimated from various amounts of simulated data with SOAs randomly varying in the
200–400 ms range. Each analysis was run on 100 simulated data sets. 5 of the resulting
ERPs/rERPs are plotted here to help visualize variability between runs; in an actual
experiment, you would just see one of these waveforms selected at random. All 100
were used to calculate the root-mean-squared-error (RMSE). This is an estimate of the
standard error; a smaller RMSE means that the estimated values are closer to the true
value.
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True ERP

Trials Data (min) ERP from averaging Overlap-corrected rERP

100 0.5

RMSE: 3.50 µV

RMSE: 4.82 µV

500 2.5

RMSE: 3.04 µV RMSE: 1.98 µV

1000 5.0

RMSE: 3.02 µV RMSE: 1.22 µV

2000 10

RMSE: 3.00 µV RMSE: 0.81 µV

Figure 5.3: Simulation 2: Conventional averaged ERPs, and overlap-corrected rERPs,
estimated from various amounts of simulated data, with a fixed SOA of 300 ms and
a continuous factor which acts linearly on the ERP. (It is not standard to use simple
averaging to estimate an ERP in this case, but since our factor had an average value of
1, simple averaging would accurately reconstruct the true ERP if not for the presence
of overlap.) As before, we plot analyses of 5 simulated data sets, while 100 simulated
ERP/rERP estimates were used to calculate the RMSE (standard error).
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to break collinearity, so it should be possible to accurately reconstruct the true ERP

from the overlapped data even without any jitter. As we see from Figure 5.3, this theory

correctly describes (simulated) practice.

In Simulation 3, we combined the jitter from Simulation 1 (tmin = 200 ms,

tmax = 400 ms) with the stimuli from Simulation 2 (a continuous factor varying ran-

domly between 0 and 2). Figure 5.4 shows the results. As compared to Simulation

2, we see that adding jitter on top of the previous inter-stimulus variability allows for

improved estimates (smaller RMSE); our technique is able to efficiently exploit both of

these sources of disambiguating information in combination.

5.2.2 Analyzing a response-related potential

In the previous chapter, we used a positivity associated with giving a response

to illustrate how non-linear regression could detect components whose latency varied

with some continuous factor. The non-linear regression approach is well-suited to de-

tecting such latency effects in general, regardless of the factor which produces them. In

this particular case of a response-related potential, though, there’s another way to think

about what’s happening: there are in fact two events — the presentation of the stimulus,

and the participant response — whose time-locked brain responses overlap.1 This sug-

gests that we might do even better to analyze that data with this method, simultaneously

estimating the rERP time-locked to the stimulus presentation (time zero in the previous

figures) and the rERP time-locked to the response (the thick black line on the previous

figures). Figure 5.5 shows the resulting rERPs.2 As expected, the rERP time-locked to

the response shows a positivity that begins precedes ∼200 ms before the button press,

and continues ∼300 ms after it.

In estimating these rERPs, we assumed that every stimulus and every response

produced exactly the same ERP, regardless of response latency; i.e., the only difference

between a fast response and a slow responses is that they happen at different times.

We might wonder how accurate this is — is there different componentry between fast

and slow responses, reflecting their production via different routes? To find out, we

1Thanks to David Groppe for suggesting this application.
2Data from Urbach & Kutas, 2008. Thanks to Tom Urbach for sharing this data.
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True ERP

Trials Data (min) ERP from averaging Overlap-corrected rERP

100 0.5

RMSE: 2.75 µV

RMSE: 4.14 µV

500 2.5
RMSE: 2.55 µV

RMSE: 1.89 µV

1000 5.0
RMSE: 2.52 µV

RMSE: 1.00 µV

2000 10
RMSE: 2.51 µV

RMSE: 0.65 µV

Figure 5.4: Simulation 3: Conventional averaged ERPs, and overlap-corrected rERPs,
estimated from various amounts of simulated data, with SOAs varying randomly be-
tween 200–400 ms and a continuous factor which acts linearly on the ERP. As before,
we plot analyses of 5 simulated data sets, while 100 simulated ERP/rERP estimates were
used to calculate the RMSE (standard error).
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a
-5 µV

  200 ms

b
-5 µV

  200 ms

Figure 5.5: rERP estimates time-locked to stimulus presentation (a) and response (b)
from the go/no-go experiment data used in the previous chapter, as estimated by our
overlap correction technique. In a, 0 ms corresponds to the stimulus presentation time.
In b, 0 ms indicates the button press time.

calculated the predicted ERP at a range of different response times from this model by

taking the stimulus-locked rERP and adding a shifted copy of the response-locked rERP.

These predicted ERPs are shown in Figure 5.6a. For comparison, Figure 5.6b shows a

non-linear model fit from the previous chapter on the same data. This is a very flexible

model (with 13150 free parameters) which gives a fairly direct representation of the

trial-level data. Yet our new model, with only 514 parameters, seems to capture all of

the structure that the flexible model does. Figure 5.6c shows the difference between

these images, with a ‘zoomed-in’ colormap to make any differences more visible. No

structure jumps out at us — especially for values in the 300–600 ms range on the y-axis,

which is where most of our data lies.

We don’t want to overinterpret this, since this is an illustration of our technique,

not a rigorous study; if we were doing this for real, we’d certainly analyze more than one

electrode, look at different participants individually, and so forth. But as far as this ex-

ample goes, we don’t see any evidence that fast and slow responses differ systematically

in any way besides a simple shift in the response-locked positivity.
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Figure 5.6: (a) Predicted ERPs at different response latencies, according to the overlap
model (Figure 5.5). (b) Predicted ERPs from a non-linear regression model fitting a
cubic spline basis with 50 degrees of freedom at each time point (a duplicate of Fig-
ure 4.7b). (c) The difference b − a. Note that, to make details more visible, this image
uses a different colormap than the above two. There is no clear structure visible in this
image, suggesting that the model in (a) has successfully captured the important features
of the data.
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5.2.3 Comparison to Adjar

Perhaps the best-known method for overlap correction is ERP studies is the Ad-

jar technique, introduced by Woldorff (1988, 1993). Adjar and our technique are very

similar in spirit: they both assume that the ERPs from adjacent trials simply sum, with

an offset, and then attempt to reconstruct what the ERPs would have to be in order to

produce the observed data; and they both do this by, at some level, taking that observed

data, and attempting to work out what variations in the scalp potential time-locked to

one event should be attributed to the previous event instead. However, in our technique,

this attribution problem is solved implicitly by the standard least-squares fitting machin-

ery; aspects of the data which are explained by one predictor cannot also be explained by

another, so the fitting process must choose which to use. In Adjar, this problem is solved

explicitly, by an iterative process of calculating ERPs, convolving them with the SOA

distribution to estimate how they contribute to the ERPs to adjacent stimuli, and then

subtracting off this contribution. To simplify calculations, some parts of the analysis

use pooled averages rather than stimulus-specific averages; therefore, it is necessary to

ensure that all combinations of stimuli orderings are observed, and in roughly equal pro-

portion. This also limits Adjar’s ability to handle the kind of inter-stimulus variability

that our technique exploited in Simulations 2 and 3, and even with such simplifications,

the analyst is still required to make some reasonably complex judgements about how

best to implement the procedure in their particular case.

While we are generally in favor of the use of judgement when performing sta-

tistical analyses, this degree of manual attention seems excessive given the availability

of computers with sophisticated linear algebra libraries and copious memory. We pre-

fer to leave such grunt work to them. Overall, we see our procedure as essentially a

modernized implementation of the principles underlying Adjar, in which we as analysts

take on the job of accurately describing what happened in the experiment (by setting

up our predictors), and the computer then automatically derives the optimal method for

disentangling these effects.

The other advantage of our technique, of course, is that it fits neatly into the

rERP framework, which means that it can be straightforwardly combined with all of the

other capabilities that framework provides, such as the use of continuous or non-linear
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predictors.

5.3 Generalized Least Squares

5.3.1 Motivation

Now that we’ve seen the advantages of using a combined regression model for

overlap correction, we turn to the more speculative portion of the paper. Our motivation

here is that, if we are to believe statistical theory, it is possible to both extract more

information from our data, and to perform powerful statistical tests directly within our

regression model.

These tests are the more tempting part of the package, because if they can be

made to work then they may allow us to detect significant effects within individual par-

ticipants, rather than only at the population level. This would give us a more detailed

view into these effects by allowing us to more finely parse individual variation, and,

potentially, give us vastly more power to detect particular effects. This is because, intu-

itively, the relevantN is the the number of EEG samples we can record or the number of

trials that we can run rather than the number of participants that we are able to bring into

our lab, which is many orders of magnitude smaller. This would be particularly valu-

able for the corpus-style studies that rERP enables, because studies which cast a wide

net rely heavily on multiple-comparison correction methods which are very hungry for

power.

And it’s not clear how else we could get this power. Current methods are suf-

ficient for detecting single effects, but it is a rare ERP study that reports an effect at

p < 0.001, and increasing our participant counts by an order of magnitude would be

impractical. Alternatively, we might try applying non-parametric methods such as boot-

strap or permutation tests within individual participants, but these face two significant

challenges that would have to be overcome. The first is that there simply isn’t any really

good way to apply them to data sets containing overlapping. For epoched data, we can

resample epochs. If we have no epochs, but only a long contiguous stream of overlap-

ping ERPs embedded in EEG noise, then we resample. . . what? There are proposals in

the literature (Lahiri, 2003), but this remains an active area of research, and solutions
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necessarily depend on having a reasonably accurate model of the structure of your data

— which makes them rather similar to the parametric approaches we investigate here.

Secondly, even if we worked out a way to make them work, multiple-comparison correc-

tions require us to be able to calculate very small p values. For example, if we check all

points in a 1-second rERP sampled at 250 Hz with Bonferroni correction, then we need

p < 0.0002 for significance at the 0.05 level. Simply measuring such a small p value

with the bootstrap would require on the order of 500,000 resamples, which is compu-

tationally prohibitive — and this is a relatively modest application of such corrections.

This challenge too may be solvable, but it isn’t clear how.

So, we turn to the aforementioned statistical theory. To understand where our op-

portunity lies, consider the list of requirements for using least-squares regression given

in every statistics textbook. It goes something like: the errors must have a gaussian

distribution, and be homoskedastic, and uncorrelated. This is something of an overstate-

ment; in fact, none of these are required for least-squares regression to be unbiased (it

gets the right answer on average) and consistent (given enough data, it’s always close to

right). However, when these conditions do hold, theory says, we get two benefits. First,

if the errors are homoskedastic and uncorrelated, this implies that the ordinary least-

squares estimator is the best possible unbiased estimator that can be computed using

linear algebra (that is, given limited data, it will do better than the alternatives; this is

the “Gauss-Markov theorem”). And secondly, all three conditions together are needed

to ensure that the standard t- and F -tests will give accurate p values.

For the regression models in this chapter, the errors under discussion are the EEG

background noise, sampled at successive points in time. How well does it meet these

conditions? These scalp potentials have a distribution which is fairly close to gaussian

(though with slightly heavier tails); close enough for most purposes. The homoskedas-

ticity requirement says that we expect the background noise to be equally noisy at all

moments, or at least not to vary with our experimental conditions; this is also quite rea-

sonable, though again not perfect — any stimulus-related induced change in EEG power

will manifest as a departure from homoskedasticity. These deviations, however, should

be rather small compared to the overall EEG power. And finally, the requirement the

the noise be uncorrelated says that if we pick a moment at random to observe the scalp
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Figure 5.7: (a) The autocorrelation function (ACF) of a signal where each point is
sampled independently. It has the value one at lag zero, and zero everywhere else.
(b) The power spectral density (PSD) for this same signal. (c) The autocorrelation
function computed from a ∼2 minute stretch of EEG data. It has the value one at lag
zero, and decreases linearly as lag increases. (d) The well-known ‘pink noise’ power
spectral distribution for EEG, with its 1/f shape (plus a hump at 10 Hz due to alpha —
the corresponding 10 Hz wiggles in the ACF are just barely visible).

potential, then this should tell us absolutely nothing about what the scalp potential will

be when we take our next observation, 4 ms later. This assumption is clearly laugh-

able. Intuitively, we know that nearby points in an EEG recording will have, on average,

somewhat similar values.

We can quantify this violation by computing what is known as the auto-

correlation function, ACF(n). This function is measured by taking random pairs of

points that are n milliseconds apart (n is known as the lag), and computing their corre-

lation. For any signal, ACF(0) = 1, because each point is always perfectly correlated

with itself; but as n increases, we expect to see ACF(n) decrease. According to our

regression requirements, the autocorrelation function should drop immediately to zero
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and stay there, as shown in Figure 5.7a. A useful fact is that for any signal, the ACF

and the power spectral density (PSD) form a Fourier transform pair. Since the Fourier

transform of a point impulse function is a flat line, this means that a signal containing

uncorrelated values has a flat power spectrum, as shown in Figure 5.7b. Such a signal

is therefore called white noise, since light with an analogous spectrum would appear

white.

The ACF for actual EEG data looks quite different: rather than dropping in-

stantly to zero, or even dropping quickly to zero, it diminishes in a leisurely linear

fashion (Figure 5.7c). This property of the EEG is equivalent to another, much better

known property: that it has a 1/f or ‘pink’ spectrum (Figure 5.7d). When we take the

Fourier transform, the large values of the PSD at low frequencies correspond to a large

DC component in the ACF; in a pink noise signal, arbitrarily distant points in time are

still quite correlated.3

So clearly the ‘requirement’ of uncorrelated errors is massively violated for the

regression models we consider here. This doesn’t invalidate their use, any more than

it invalidates the use of conventional EEG averaging — they will still give unbiased

estimates for our β coefficients. But it means that we cannot use standard parametric

significance tests, and it means that there may be other ways of performing our estima-

tion which produce better estimates of the underlying ERP signal, from fewer trials.

5.3.2 Mathematics

In fact, such a method exists, and is known as generalized least squares (GLS),

to distinguish it from the ordinary least squares (OLS) that we’ve been using so far.4

3One might quibble at this reference to non-zero correlation at arbitrarily large lags, since clearly
the pictured ACF will hit zero eventually. But this is actually something of an illusion, caused by our
estimating the ACF from a finite stretch of data. Technically speaking, a true pink noise signal is non-
stationary, which implies that neither its PSD nor ACF are well-defined; as you sample longer and longer
signals, there is more and more opportunity for very large, very low-frequency noise to intrude, and so the
empirical PSD records more and more power at lower frequencies, and the empirical ACF drops off more
and more slowly. However, actual measured EEG data stops being pink before this can occur, because
the high-pass filter applied during the acquisition process suppresses these very low frequencies. (Indeed,
this is the whole reason that such a filter is necessary: our analog/digital converters would quickly saturate
if exposed to real pink noise.) But in any case, the correlations in EEG are very strong on the time-scale
of typical experimental manipulations.

4NB: The word “generalized” in “generalized least squares” has nothing to do with its usage in the term
“general linear model” (GLM). “General linear model” means either the same thing as “linear model”
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The essential idea is this: if we know what the correlations and heterskedasticity in our

errors looks like, then we can correct for it using some linear algebra. Having done so,

we regain the nice properties that we expect from linear regression: GLS is the best

possible unbiased estimator for our βs that can be computed using linear algebra, and

(given gaussian errors) the standard significance tests again begin to produce accurate p

values (Aitken, 1935).

Unfortunately, this approach does not lead to better estimates of the ERPs mea-

sured in traditional orthogonal designs that use widely separated epochs; in such cases,

the GLS estimates are identical to those produced by OLS or averaging. (For details,

see Appendix 5.A.) However, in the presence of collinearity (whether arising from the

characteristics of the stimuli themselves, or introduced by overlap), our rERP estimates

can be improved. And, in all cases, the GLS model opens the possibility of using the

powerful statistical techniques we propose here — even with traditional orthogonal de-

signs.

Here’s how it works. In OLS, we assume that the data y were generated by

additively combining some deterministic function of our predictors, Xβ, with random

noise, ε:

y = Xβ + ε

Furthermore, we assume that each entry in the vector ε was generated by taking an

independent sample from a normal distribution N(0, σ2). A different, equivalent, way

of stating this assumption would be to say that the whole vector ε was generated by

taking a single sample from multivariate normal distribution N(0, σ2I), where I is the

identity matrix. (This is where the homoskedasticity and uncorrelated errors ideas come

from — homoskedasticity just means that all the entries on the diagonal of this matrix

are the same, σ2, and uncorrelated errors just means that all the off-diagonal entries are

alone, or else it means the multivariate extension of linear modelling in which many sets of data are re-
gressed onto the same set of predictors in an efficient way — see previous chapter’s Appendix. It also has
nothing to do with “generalized linear modeling” (also abbreviated GLM), which is the extension of stan-
dard linear regression to situations in which data may have a non-gaussian distribution, and there may be a
non-linear transformation applied to the data (the linking function) before fitting is performed (McCullagh
& Nelder, 1989). The use of the word “general” for all of these different techniques presumably reflects
only the regrettably limited size of the English lexicon.
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zero.)

Then the maximum likelihood estimate β̂ is the ordinary least squares estimator

β̂ = (XTX)−1XTy.

That’s the formula we use for estimation, but to understand how β̂ is distributed, it’s

useful to expand it further:

β̂ = (XTX)−1XT (Xβ + ε)

= β + (XTX)−1XTε

In general, if A is a matrix and b is distributed according to a multivariate nor-

mal N(µ,Σ), then Ab is distributed according to a multivariate normal distribution

N(Aµ, AΣA). Therefore, we have that the covariance matrix of (XTX)−1XTε is

(XTX)−1XTσ2I
(
(XTX)−1XT

)T
= σ2(XTX)−1XTX

(
(XTX)−1

)T
= σ2

(
(XTX)−1

)T
= σ2(XTX)−1 (because XTX is symmetric)

So our estimate β̂ is the sum of the actual, true β, plus some gaussian noise with mean

zero and a sampling covariance matrix that is known except for the scaling factor, σ2.

Therefore, the expected value of β̂ is β (i.e., it is an unbiased estimator), and we can

use the covariance matrix σ2(XTX)−1 to construct significance tests. For example, the

diagonal elements of σ2(XTX)−1 give the sampling variances for each of our βs, and if

we take the square root of the sampling variance we get the standard error.

In GLS, we use the same setup:

y = Xβ + ε

But, now we assume that ε was generated by taking a sample from a multivariate nor-

mal distribution N(0, σ2Σ), where Σ is an arbitrary covariance matrix. (Technically we
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don’t really need to separate out the σ2 scaling factor here; we could just merge it into

the overall matrix, since the matrix is arbitrary anyway. But in ordinary least-squares,

it turns out that we can estimate β without estimating σ2; similarly, in generalized least

squares, we only have to know Σ up to a multiplicative factor. So separating out σ2 em-

phasizes this.) Under this assumption, the maximum likelihood estimate for β̂ becomes

β̂ = (XTΣ−1X)−1XTΣ−1y

We could use this expression directly to compute β̂, but there’s an easier way.

Suppose that we have some matrix S. Then we can take the basic equation that

defines our data, and multiply both sides by S:

Sy = SXβ + Sε.

Since we did the same thing to both sides of the equation, the equality still holds. In

particular, the solution β that solves this equation is the same as the one that solved our

earlier equation. What we’ve done is basically change our original regression problem

into a new regression problem:

y = Xβ + ε

where y = Sy, X = SX , ε = Sε. This new regression problem has the same solution

as our old one, but — and this is critical — it has a different noise term. By assumption,

ε has covariance matrix σ2Σ. So we can use the same formula we used above for linear

transformations of random vectors, and infer that ε has covariance matrix σ2SΣST .

So, here’s the trick: let’s choose our S so that SΣST becomes the identity matrix.

Since Σ is a covariance matrix, it must be positive definite; that means that we can take

its Cholesky decomposition, CCT = Σ, and then invert that, S = C−1. Now we have

SΣST = C−1Σ
(
C−1

)T
= C−1CCT

(
CT
)−1

= I.
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What this means in English is that S is a matrix which turns our correlated noise, ε, into

white noise, ε.

The result is that if we use this choice of S, our new regression model using y

andX is one where the noise has a simple σ2I covariance matrix, so we can use ordinary

least squares without guilt. When we do, we find that the OLS estimate is

β̂ = (XTX)−1XTy

= (XTSTSX)−1XTSTSy

= (XTΣ−1X)−1XTΣ−1y.

which is the same as the GLS estimator for our original problem, as shown above.

So the easy way to compute the GLS solution to a regression problem is to:

1. Figure out what kind of linear transformation you would need to apply to your

noise in order to turn it into white noise.

2. Apply this linear transformation to both your data and your predictors.

3. Regress your transformed data on your transformed predictors, using ordinary

least squares.

The β coefficients estimated by this transformed model are, as usual, unbiased estima-

tors of your rERP. Given enough data, the transformed model and the original model

will both produce the same answer. Actually, for purely orthogonal designs, it turns out

that they will always produce exactly the same answer (Appendix 5.A). But in the pres-

ence of collinearity then they may differ, and when this occurs the transformed model

will on average give more accurate results with fewer data. Furthermore, in the trans-

formed model, we can use standard parametric statistical tests. This happens because

in GLS, the sampling covariance matrix for our βs is estimated to be (XTΣX)−1 rather

than (XTX)−1. What this is does is account for correlations between our βs which are

caused by them being estimated from correlated data. The (XTX)−1 form assumes that

all correlations between β estimates are caused by collinearities in our design; for EEG

this is not true, and therefore using this form gives wrong answers. The (XTΣX)−1
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form, on the other hand, more accurately allows for correlations to arise both from

collinearities and directly from the data.

5.3.3 Finding S

But before we can take advantage of GLS, we need to find the proper whitening

transform S for our data. This transform needs to be efficient to apply, it needs to

accurately correct for the correlations which are present, and — the trickiest part — it

needs to be flexible enough to work for different participants, scalp locations, recording

conditions, and so forth, all of which may produce somewhat different autocorrelation

structures.

Fortunately, there is a straightforward strategy for estimating the autocorrelation

structure from data; the general approach is known as feasible generalized least squares

(FGLS). First, we fit our model by OLS; our eventual goal is to use GLS, but we can’t

until we know S. So this isn’t the best fit possible — but it does give us an unbiased

estimate of our βs, from which we can calculate the model residuals (i.e., the differences

between the predicted values and the actual data). These residuals give us a sub-optimal

but unbiased estimate of the background noise signal whose correlation structure we

want to model. We then use our favorite technique to estimate S based on the residuals,

and then we re-do our regression fit, now using GLS with this S matrix instead of OLS.

But this S was based on unnecessarily noisy data; now that we have a model fit

using GLS, we can get a new, better estimate of the residuals from it, re-fit S to them,

re-run the GLS and around and around we go until we reach convergence (usually about

3–4 iterations).

The question then becomes, how should we estimate S, our whitening transform,

from a non-white time-series, our residuals?

ARMA models

The most common way of modeling empirical correlations in time-series data is

to use an ARMA model. The AR stands for auto-regressive: an AR(p) models assumes

that each new value in our time series is generated by taking a weighted sum of the

previous p values, plus some new noise. (One way to think of this is that it assumes
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our time-series was produced by running an order p IIR filter over white noise.) The

MA standards for moving average: an MA(q) model assumes that we have a stream of

gaussian variates, and each value in our time series is produced by taking a weighted

sum of the last q of these variates. (This corresponds to running an FIR filter with order

q over white noise.) An ARMA(p, q) model assumes that we took a time-series from an

AR(p) model, and another time-series from an MA(q) model, and added them together.

These models are widely used for handling time-series in economics, climatol-

ogy, fMRI, etc.; they’re the default tool for solving the kind of problem we face here, of

estimating the structure of a non-white noise signal so that it can be whitened. Unfortu-

nately, though, the correlations in EEG noise are much worse than they are designed to

handle. In an AR(p) model, the auto-correlation function for points more than p steps

apart drops off exponentially quickly. For an MA(q) model, it’s even worse: at a lag

of q samples it drops off immediately to zero. Therefore, these models are incapable

of accurately fitting pink noise, where the correlations drop off much more slowly. We

would need such a large p or q that we’d be fitting about one parameter for every data

point, which is not a recipe for successful statistics.

So, what else can we do?

Option 1: Keep it simple

In a traditional ERP experiment, we have a large number of trials, and from

each we extract a fixed-length epoch of data time-locked to some event of interest. A

more-or-less reasonable assumption (depending on how widely spaced our trials are) is

that background noise from different trials is not correlated; only noise within a trial is

correlated. And it’s also reasonable to assume that the correlations within each trial are

the same.

This suggests a trivial method for estimating S: just calculate the empirical

sample covariance matrix for your data across all of your trials, Σ̂, and then calculate

Ŝ = Cholesky(Σ̂)−1. However, this method’s simplicity is marred somewhat in practice

when the number of data points in each epoch exceeds the number of trials, because Σ̂

will be rank-deficient. This means that we can’t depend on either the Cholesky decom-

position or the matrix inverse to be computable. This can also be solved in a crude but
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effective manner: we just add λI to our empirical covariance matrix, where λ is a small

positive number.

The easiest way to think about this is in terms of the eigenvalues of Σ̂ — to be

a valid covariance matrix, they must all be positive and non-zero. When we add λI to

a matrix, then we add λ to each of its eigenvalues. So we will be able to perform our

calculations as long as λ is sufficiently large (and something like 10−6 is sufficiently

large). This also has a possible secondary benefit, which is that this method tends to

overfit the covariance matrix, and adding λI tends to smooth the resulting matrix. As a

result, using a larger value of λ will reduce apparent performance on our original data,

but probably get us closer to the true underlying covariance matrix. This is demonstrated

in Figure 5.8: with a small λ, we do a better job of whitening the original data, but a

worse job of whitening a second set of epochs drawn from the same recording. It isn’t

yet clear, though, whether this overfitting is a good or bad thing in practice, since it

applies only to our model of the noise.

This approach is extremely simple to implement. It also has the advantage that,

since it makes essentially no assumptions about the form of the background noise, it may

be robust to strange distributions introduced by artifacts such as eye-blinks or muscle

noise. However, we cannot use this approach if we have overlapping ERPs, because they

cannot be divided into independent epochs. So let’s consider some other approaches.

Option 2: Custom-designed whitening filter

Our overal goal here is to fix the autocorrelation function of our background

noise; but since the autocorrelation function is equivalent to the power spectrum, another

way to think about this is that we want to find some filter that will take the 1/f distribution

from Figure 5.7d and flatten it out into the distribution Figure 5.7b. So, why not use some

standard technique to estimate the PSD for our data, and then use standard digital filter

design techniques to create a filter whose frequency response is tuned to be the inverse

of the PSD?

Applying filters to EEG is a very tricky subject in general (Luck, 2005), but here

we sidestep most of those issues, since we are not actually filtering our ERP estimates

(i.e., the βs). Remember that no matter what strange and curious transformation we
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a b

c d

Figure 5.8: Plots of correlations between different points in 200 one-second epochs
of EEG data. (a) The correlation matrix for raw EEG data. (b) The ideal correlation
matrix for white noise. Our goal is to transform a into b. (c) ‘Option 1’ applied to these
data, with λ = 10−6. Top: the data that was used to calculate the covariance matrix,
after being whitened. Bottom: A different set of data, after being whitened using the
same covariance matrix. (d) The same, but with λ = 100. The top image here actually
contains more total residual correlation than the top image in c, but it is distributed more
uniformly, and this transformation generalizes much more successfully to the new data
below.
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a b

c d

Figure 5.9: Plots of correlations between different points in one-second epochs of EEG
data. (a) The correlation matrix for raw EEG data. (b) The ideal correlation matrix for
white noise. Our goal is to transform a into b. (c) ‘Option 2’ applied to these data,
using a 249-tap FIR filter. Residual correlations in the corners are due to edge effects
impacting the filter’s ability to whiten accurately. (d) ‘Option 3’ applied to these data,
using the sym4wavelet family with a seven-level decomposition. The faint boxy pattern
reflects the different wavelet decomposition scales; the grid of points at the corners
reflects edge effects, which occur separately at each scale. The faint diagonal lines
reflect residual correlation between wavelets at different scales but the same location.
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might choose use for S, we will still get an unbiased estimate of our regression coeffi-

cients. Our filter will, in effect, only be applied to the background noise. So most of the

issues which people usually worry about when filtering — phase delay, the necessary

trade-offs between time-domain distortion versus frequency-domain filter accuracy, and

so forth — are simply irrelevant, because we don’t care whether the background noise

becomes distorted, so long as its spectrum gets flat.

An appropriate tool for designing such filters is the so-called windowed tech-

nique (e.g. Smith, 1997, ch. 17) which takes an arbitrary frequency response curve and

produces an FIR filter of arbitrary order which approximates that frequency response.

This is available as a standard function in most signal processing libraries; see, for ex-

ample, the firwin2 function in SciPy (Jones, Oliphant, Peterson, et al., 2011), or

the fir2 function in the Matlab Signal Processing Toolbox (Mathworks, 2011). See

Figure 5.9c.

Option 3: The wavelet trick

The discrete wavelet transform (DWT) is analogous to the Fourier transform —

it takes a time series, and applies a linear transformation to represent it in another basis.

A wavelet basis has a particular structure, so that if we apply the DWT to a signal with

n samples, then we get out n/2 samples representing the highest frequency portion of

the signal, n/4 samples representing the next highest frequency portion, and so on until

we run out of samples. (This means that the wavelet decomposition of a signal has

coefficients on about log2(n) different scales.)

This makes it a useful tool for time/frequency analysis, and wavelets have been

applied to EEG analysis for this purpose. Our usage here is completely unrelated to

this. For us, wavelets are interesting because of one key theorem: it turns out that if we

take the wavelet decomposition of a 1/f signal, then the resulting wavelet coefficients are

(approximately) uncorrelated (Wornell, 1990; Tewfik & Kim, 1992).5 This holds quite

generally; the only requirement is the technical one that we use a wavelet basis with at

5This also, incidentally, provides a useful way to think of what makes a noise into 1/f noise. White
noise is the concatenation of a series of independent random numbers. Pink noise is the summation of a
series of transient fast waves (the fine-scale wavelet basis functions) and transient slow waves (the coarse-
scale wavelet basis functions), with the slow waves overall larger than the fast ones, and the amplitude of
each wave is an independent random number.
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least 4 vanishing moments. (This means that when the wavelet decomposition divides

the signal into low-frequency and high-frequency components, polynomial curves of up

to degree 4 are always considered low frequency components.) And since the DWT is a

linear transformation, we don’t actually have to compute the matrix S and then multiply

our various other matrices by it — we can just use an off-the-shelf DWT library to

transform our data directly. See Figure 5.9d.

The one thing we have to watch out for is that while the DWT decorrelates the

data, it does not produce homoskedastic data. This is unsurprising if we think about

it; since EEG has a 1/f spectrum, the low-frequency parts of the decomposition must

have higher power (i.e., variance) than the high-frequency parts. So applying the DWT

is enough to get us from a 1/f noise covariance matrix to a diagonal covariance matrix,

but according to GLS theory, we can’t stop there — we still need to rescale the wavelet

coefficients obtained at each decomposition scale to equalize their variance, and to do

that we need to estimate them inside an FGLS fitting loop.

Fadili and Bullmore (2002), who first proposed the usage of wavelets for GLS

whitening in the context of fMRI, spend some energy on deriving a theoretical formula

for the relative variance expected at each scale. We prefer a simpler approach, of com-

puting the sample variance of the wavelet decomposition of our residual time series at

each level of decomposition; this is easy to implement, requires only a handful of addi-

tional free parameters, and gains some robustness against possible real-world deviations

from the theoretical 1/f noise model.

As for a choice of basis, we currently prefer the 4th order symlets (also known as

sym4). Why? On the one hand, we want a wavelet basis that has 4 vanishing moments,

in order to ensure that the whitening theorem applies. On the other hand, we would like

to use a wavelet with as few coefficients as possible, in order to minimize edge effects,

which tend to reduce the efficacy of our whitening (Fadili & Bullmore, 2002). The

shortest possible wavelets with 4 vanishing moments have 8 coefficients. It’s likely that

any wavelets that achieved this lower bound would work equally well. Among these,

sym4 is the one that comes closest to having linear phase, which means it will tend

to distort our signal less than the alternatives. (Usually linear phase is mentioned in

the context of filters, but the wavelet decomposition basically works by using a band-
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pass filter to compute each set of wavelet coefficients, so it makes sense here as well.

All filters introduce some delay into their output, and the amount of delay may vary

for different frequencies, introducing distortion; linear phase filters introduce the same

delay at all frequencies.) Like we said above, we have no reason to think that having

linear phase actually matters for this application. But we have to pick something, so

superstition seems is as good a reason as any.

Which option should we pick?

The options proposed here make different tradeoffs between computational prac-

ticality and their flexibility for handling unusual data.

Option 1, the empirical covariance approach, makes no assumptions about the

form of the noise, making it infinitely adaptable. It requires epoched data to estimate,

which is a limit to its use; but this could conceivably be fixed by imposing some as-

sumptions about its structure (e.g., if we assume the background noise is stationary, that

would imply that Σ was Toeplitz). But such an approach would still require explicitly

forming the covariance matrix Σ̂. If we have n data points, then this matrix has n2 en-

tries. If we wanted to form this matrix for the 10 minutes of overlapped data shown

in Figure 5.2, then we would need 180 gigabytes of RAM (or 90 gigabytes for single

precision). Hardware that can store such matrices is not widely available, and inverting

such a matrix is even more of a challenge.

So this was part of the motivation for the next two options: both allow us to

calculate the effect of multiplying by S without explicitly forming the matrix S in mem-

ory. The filtering option is conceptually straightforward, and has the advantage that it

can straightforwardly adapt to artifacts with a periodic nature, since their effect is to alter

the spectral distribution of the signal. (Examples include alpha, 60 or 50 Hz line noise,

heartbeat and muscle artifact.) The wavelet option is less flexible, in that it assumes

that the noise has a clean 1/f spectrum; its flexibility is limited to adapting to different

exponents on the 1/f, which correspond to different allocations of power between the

different levels of decomposition.

On the other hand, when working with continuous data containing overlap, we

already have extra motivation to use data-sparing artifact correction techniques such as
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ICA (Makeig, Bell, Jung, & Sejnowski, 1996). As a practical matter, since we have

no epochs, it is unclear how we should define the boundaries of the data to be rejected

around an artifact, and each span of data which we reject will impact on multiple trials.

If we are using either the filter- or wavelet-based GLS technique, then this adds an

additional motivation, since every time we reject a span of data we will introduce new

boundary artifacts (Figure 5.9). So it’s unclear that filter approach’s greater flexibility

is important in practice; we may be removing the relevant artifacts in a pre-processing

step regardless of which option we use.

The other advantage of the wavelet approach is that it can be implemented ex-

tremely efficiently. Not only does it allow us to avoid forming the S matrix, but the

discrete wavelet transform can be performed extremely quickly (faster, even, than the

FFT), and the simplicity of the required parameter estimation allows us to perform the

full FGLS iterative fitting algorithm in only a single pass through our data, and without

forming the X matrix in memory (see Appendix 5.B).

5.3.4 rERPs with less noise

One of the motivations for making GLS work is that, at least in some cases, it

should give us more accurate rERP estimates. This benefit is probably of less impor-

tance than the statistical tests described below, but even so, it’s worth examining how it

plays out in practice. In Simulation 4, we repeated Simulation 1 above (Figure 5.2, but

this time we computed filter- and wavelet-based GLS estimates in addition to the OLS

estimates we used previously. To make this test more challenging, we also cranked up

the degree of overlap: in this simulated experiment, the SOA varies randomly between

150 and 250 ms, meaning that there are at least four and potentially as many as eight

ERPs overlapping in the stimulus at any one time.

The results are shown in Figure 5.10. The GLS estimates outperform the OLS

estimates in terms of RMSE in all cases except for the 4000 trial wavelet GLS, which is

very slightly worse.

It’s also instructive to consider what the noise looks like. By the time we get to,

say, the 4000 trial OLS estimate, most of the jaggy high-frequency noise is gone; the

really persistent errors are in the form of slow drifts away from the true ERP. This is
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because of the 1/f character of the EEG noise: the strongest noise is the low frequency

noise, so it persists the longest. This is why some kind of detrending (e.g., in the simplest

case, baselining) is so important for EEG — because the drift, the low frequency noise,

is huge. We all know that when the whole EEG signal drifts off in some direction this

isn’t really telling us much about the brain response to any particular event; it’s not that

we should ignore it — it might in fact reflect a real, slow wave brain potential — but it’s

just as likely that the EEG is just drifting randomly because that’s what it does. Since

these drifts are huge, standard least-squares pays much more attention to them than it

should. This is where GLS’s advantage comes from: it downweights the influence of

low-frequency noise exactly enough to counteract OLS’s tendency to overweight it.

In fact, part of the reason why GLS’s advantage over OLS in these examples

is relatively modest is that we baselined all of the rERPs after estimating them. This

helped the OLS estimates much more than it helped the GLS ones, basically because

it’s replicating some of the detrending that the GLS estimators are doing in a more

principled way.

5.3.5 The linear hypothesis test

Our second and primary motivation for investigating GLS estimation is for the

statistical tests which it may enable. In particular, we consider the linear hypothesis

test (Fox, 2008), a standard but not necessarily well-known method. Its advantage over

other significance tests, such as the better known t test or ANOVA-style F tests, is that

it allows both simple and complex hypotheses to be tested in a uniform manner. Any

null hypothesis which can be expressed as a set of linear constraints on β coefficients

in a single regression model can be tested. The result is an ordinary F value, with

numerator degrees of freedom equal to the number of linear constraints included in your

hypothesis, and denominator degrees of freedom equal to the usual residual degrees of

freedom in your model (i.e., the number of data points minus the number of βs).

With the combined-regression rERP/GLS estimation approach, all our rERP val-

ues across different latencies and predictors are β coefficients within a single regression

model,6 which makes the linear hypothesis test a very flexible tool.

6At least, those measured at a single electrode. There are also multivariate versions of the linear
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Here are some examples of different null hypotheses that we can test using this

method:

β150 ms = 0

In English: “Is the point rERP amplitude at 150 ms significantly different from zero?”

This is effectively a t test for this coefficient; indeed, the F value we get out is just the

square of the t value we would get if we ran this test in the traditional way.

1

26

(
β200 ms + β204 ms + · · ·+ β300 ms

)
= 0

In English: “Is the mean rERP amplitude in the 200–300 ms window significantly dif-

ferent from zero?”

β300 ms =
1

26

(
β−100 ms + β−96 ms + · · ·+ β−4 ms + β0 ms

)
In English: “Is the point rERP amplitude at 300 ms significantly different from the mean

amplitude observed during the baseline period?”

1

25

(
β300 ms + β304 ms + · · ·+ β396 ms

)
=

1

25

(
β400 ms + β404 ms + · · ·+ β496 ms

)
In English: “Does the average rERP amplitude change significantly between the 300–

400 ms window and the 400–500 ms window?”

βfactor A, 400 ms = βfactor B, 400 ms

In English: “Do factor A and factor B have different effects at 400 ms?”

We aren’t restricted to writing single equations, either; we can write a system of

hypothesis test that might be useful for testing hypotheses across multiple electrodes simultaneously.
However, these would require that we use a single S matrix for all electrodes, which seems unlikely
to work well since different places on the scalp exhibit have rather different spectral distributions (for
instance, consider the topographic distribution of alpha power).
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equations, which produces an omnibus test:

β400 ms = 0

β404 ms = 0

...

β600 ms = 0

In English: “Does the rERP amplitude differ significantly from zero at any point be-

tween 400 and 600 ms?” This is exactly analogous to a test for a main effect in ANOVA.

(In fact, if we instead wrote a set of equations here stating that the means of all our

groups were the same, then the linear hypothesis test would give us the same F value

and degrees of freedom as we would get when running an ANOVA the normal way.)

Like a test for a main effect, this can be significant even if none of the individual tests

are; this happens when there is moderate evidence for multiple effects, so that we don’t

have enough power to identify any of them specifically, but can still be fairly certain that

at least one of them is real.

Perhaps the single most useful test for ERP work, then, is:

β400 ms =
1

26

(
β−100 ms + β−96 ms + · · ·+ β−4 ms + β0 ms

)
β404 ms =

1

26

(
β−100 ms + β−96 ms + · · ·+ β−4 ms + β0 ms

)
...

β600 ms =
1

26

(
β−100 ms + β−96 ms + · · ·+ β−4 ms + β0 ms

)
In English: “Does the rERP amplitude differ significantly from the mean baseline am-

plitude at any point between 400 and 600 ms?” This corresponds somewhat to the

common approach of calculating the average amplitude over the 400–600 ms window

(after baselining) and entering this into an ANOVA. We do that, but it’s not really the

average amplitude we’re usually interested in. Really, what we want to know is whether

there’s anything happening there at all, and we average because it’s a convenient way to

pool power across adjacent points while still being able to use available statistical tools.

This omnibus test also allows us to pool power across adjacent points, but is able also



154

to detect patterns like a positivity in the 400–500 ms window followed by a negativ-

ity in the 500–600 ms window, which together sum to a zero mean amplitude over the

400–600 ms window.

Of course, normally if we saw that pattern of a positivity followed by a negativity

in our ERP, then we’d pick a different window. But this is (a) statistically speaking, a sin

(Kriegeskorte, Simmons, Bellgowan, & Baker, 2009), and (b) impractical when running

large scale automated tests. So this is the form of the linear hypothesis test that seems

most generally useful.

But what if the comparison we want to make is not easily expressed as a single

β coefficient? For example, we discussed a coding scheme in the previous chapter

for an experiment containing two categorical factors, standard vs. target and red vs.

blue. Suppose we want to know whether our targets show an effect of color. Recall that

according to the scheme we used, a red target was coded with a combination of predictor

values like:

x1i = 1 x2i = 1 x3i = 0 x4i = 0

while a blue target was

x1i = 1 x2i = 0 x3i = 1 x4i = 1

So there is no single β that reflects the comparison we want to make. One solution

would be to figure out some other coding scheme in which such a single β would exist,

so that we could use a t test. But an easier approach would be to take advantage of the

linear hypothesis test. In this model, the predicted ERP for red targets is β1 + β2, and

for blue targets is β1 + β3 + β4, so if we want to know if these differ at, say, 300 ms, we

can test with the null

β1at300ms + β2 at 300 ms = β1 at 300 ms + β3 at 300 ms + β4 at 300 ms

The resulting F value will again be the square of the t value we would have gotten by
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recoding our predictors.

5.3.6 Simulating the linear hypothesis test

So: does it work? To find out, we analyzed simulated EEG recordings using

OLS, filter-based GLS, and wavelet-based GLS, and then tested the following hypothe-

sis: 

β500 ms =
1

25

(
β−100 ms + β−96 ms + · · ·+ β−4 ms

)
β504 ms =

1

25

(
β−100 ms + β−96 ms + · · ·+ β−4 ms

)
...

β700 ms =
1

25

(
β−100 ms + β−96 ms + · · ·+ β−4 ms

)
The simulated EEG was created using the same method as Simulation 4, with 2000

trials and SOAs randomly varying between 150–250 ms. In Simulation 5, however, we

left out the actual ERP and included only background noise; i.e., the null hypothesis

was true. Under these conditions, a properly calibrated statistical test should produce p

values which are distributed uniformly between zero and one; Figure 5.11 shows what

we actually got.

The OLS results, as expected, deviate sharply from the ideal. They’re conser-

vative, at least, which is better than being anti-conservative — but in other tests (not

shown) we’ve seen the OLS regressions give results that are equally skewed the other

way, or where all p values are either < 0.01 or > 0.99 with nothing in between. It seems

unwise to put much trust in them in general. The GLS results come much closer to the

ideal; the wavelet GLS is somewhat anti-conservative in this test, and the filter GLS

results are perfect.

In Simulation 6, we repeated the above test, but this time with a real effect

present. We used the same true ERP as shown in Figure 5.10, which has a positivity

in the 500–700 ms window which we tested. (This simulation thus corresponds exactly

to the 3rd line of that figure.) Our results are shown in Figure 5.12. All of the hypothesis

tests shown here had excellent power to detect this effect. In particular the filter-based

GLS, our most trustworthy test from the previous simulation, produced a p < 0.05 on

94.8% of runs, and p < 10−4 on 32.6%.
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Figure 5.11: Simulation 5: Distribution of p values in a linear hypothesis test on sim-
ulated data, where the null was true. (a) The ideal distribution — 5% of p-values are
less than 0.05, 1% are less than 0.01, etc. (b) The results from simple OLS fitting, i.e.,
pretending that the EEG background noise is actually white noise. (c) Filter-based GLS
fitting. (d) Wavelet-based GLS fitting.
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Figure 5.12: Simulation 6: Distribution of p values in a linear hypothesis test on sim-
ulated data, where an effect existed (the positivity in the 500–700 ms range shown in
Figure 5.10). (a) The ideal distribution — a sufficiently powerful test would hope to
detect a significant effect on every trial. (b) The results from simple OLS fitting, i.e.,
pretending that the EEG background noise is actually white noise. (c) Filter-based GLS
fitting. (d) Wavelet-based GLS fitting.
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These results, however, are quite preliminary. The success of the filter-based

GLS in particular should be taken with a grain of salt, since our method for simulat-

ing EEG (phase shuffling) produces a noise signal with a fixed spectrum and stationary

distribution — which is exactly what the filter-base GLS assumes about the data. Real

EEG may prove less congenial, and the anti-conservativity demonstrated by the wavelet

technique, while mild, suggests that these tests may be somewhat sensitive to mild mis-

pecification. Nevertheless, we find these initial results promising; as these techniques

undergo more rigorous testing then further modifications may be required, but the basic

theory and techniques developed here should put such work on a solid foundation.

5.4 Acknowledgements

Chapters 4 and 5, in full, are currently being prepared for submission for publi-

cation of the material. The dissertation author was the primary investigator and author

of this material.

5.A GLS for orthogonal designs

Suppose that we have a collection of epochs (as opposed to long segments of

continuous data), and that we believe that they are widely separated enough that data

in one epoch is uncorrelated with data in other epochs. (Or, at least, we are willing to

make this assumption for purposes of GLS analysis.) Furthermore, suppose that our

predictors are orthogonal. Then, we claim, the GLS regression estimate will coincide

with the OLS regression estimate. We show this here.

In a mild abuse of notation, let S denote the matrix which whitens a single epoch.

(Previously, we used S to denote the matrix which whitened the entire data set in one go;

for our current setup, the old S would have a block diagonal form composed of copies

of the new S.) Also, let Xji be the matrix of predictor values for factor j in epoch i.
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Then we have

X =


X11 X21 · · ·
X12 X22 · · ·
X13 X23

... . . .

 X =


SX11 SX21 · · ·
SX12 SX22 · · ·
SX13 SX23

... . . .


According to the standard regresson formula, β̂ = (XTX)−1XTy. We begin by exam-

ining the first part of this formula. We have

XTX =


XT

11S
T XT

12S
T XT

13S
T . . .

XT
21S

T XT
22S

T XT
23S

T . . .
... . . .



SX11 SX21 · · ·
SX12 SX22 · · ·
SX13 SX23

... . . .



=


∑

iX
T
1iS

TSX1i

∑
iX

T
1iS

TSX2i . . .∑
iX

T
2iS

TSX1i

∑
iX

T
2iS

TSX2i

... . . .


Because we are assuming no overlap, the Xji matrices are scalar matrices, Xji = xjiI .

Therefore we can simplify further:

=


(∑

i x1ix1i
)
STS

(∑
i x1ix2i

)
STS . . .(∑

i x2ix1i
)
STS

(∑
i x2ix2i

)
STS

... . . .


Because we are assuming that the design is orthogonal, we know that

∑
i xjixki = 0

for j 6= k. (This is the definition of orthogonality.) Therefore, this is a block diagonal
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matrix; letting cj =
∑

i x
2
ji, we have:

XTX =


c1S

TS

c2S
TS

. . .


and

(
XTX

)−1
=


1
c1

(
STS

)−1
1
c2

(
STS

)−1
. . .

 (∗)

Turning to the other part of our regression formula, let yi represent the data from

epoch i. Then we have

XTy =


XT

11S
T XT

12S
T XT

13S
T . . .

XT
21S

T XT
22S

T XT
23S

T . . .
... . . .



Sy1

Sy2
...



=


∑

iX
T
1iS

TSyi∑
iX

T
2iS

TSyi
...


And, again using the fact that Xji is diagonal,

=


STS

∑
iX

T
1iyi

STS
∑

iX
T
2iyi

...

 (∗∗)

When we multiply (∗) and (∗∗) together to produce the full regression formula

(XTX)−1XTy, we see that the (STS)−1 and STS terms cancel out, and the rest of the

formula is identical to what it would have been if they had never been there in the first

place, i.e., if we had used OLS instead of GLS. However, the (XTX)−1 is different
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between the GLS and OLS models, which means that the statistical tests which rely on

it will be different as well. If we do have an orthogonal design in which we wish to use

GLS for statistical testing, then this suggests a possible optimization: we can perform

the fit itself using OLS, but then calculate (XTSTSX)−1 as the unscaled covariance

matrix for use in our tests. However, perfectly orthogonal designs are rare (e.g., because

of artifact rejection), and saving a few iterations of the FGLS algorithm may not be

worth the bother in any case.

5.B Implementation considerations

Here we discuss several details of how we efficiently implement the regression

models considered in this chapter. If we have k predictors for which we would like to

compute rERPs, we want each of these waveforms to be n points long, and we have a

total of m data points, then our X matrix will have k × n × m entries. A somewhat

complex but plausible experiment might have k = 5, n = 275, and m = 45× 60× 250

(i.e., 45 minutes of data at 250 Hz). This gives a matrix with almost one billion entries,

requiring more than seven gigabytes of RAM in a straightforward implementation.

This memory usage can be reduced (and subsequent calculations made much

faster) by storing X in a sparse format, but even this is not a panacea; if we use a

whitening filter then this will remove a great deal of sparsity (though of the options

considered, the wavelet transform does the least harm in this respect). However, there is

no need to ever actually form the X matrix in memory.

To compute a least-squares regression, we need to compute (XTX)−1XTy. This

can be done without X , so long as we know XTX and XTy. We may also wish to know

the sum of squared residuals, but computing the residuals themselves requires using the

full X matrix. Fortunately, this is also unnecessary. The sum of squared residuals can

be written as

(y−Xβ̂)T (y −Xβ̂

= yTy − 2β̂TXTy + β̂TXTXβ̂
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Notice that this can be computed using only the matrices above plus yTy (i.e., the sum

of squared data). The largest of these matrices, XTX , now has only (k × n)2 entries.

In our example this comes to about 2 million, which fits easily into RAM on an average

cell phone. We also need to save a count of how many data points we have in total.

To compute these matrices, we observe that if we have a block matrix

A =

(
A1

A2

)

then

ATA = AT1A1 + AT2A2.

This means that we can compute some rows for X , compute their cross product, accu-

mulate the result into a buffer, discard the rows, and repeat. In a single pass, we can

construct everything we need to perform this regression, without ever loading X itself

into memory. This approach is more difficult if we are using whitening transforms, since

they need to act on more than one row ofX at a time, but by computing some reasonable

number of rows at a time and taking some care with the edge conditions then it can still

be used. (Even an experiment using long streams of closely spaced stimuli will usually

include a number of breaks. In this case we will generally treat each stimulus block as

a separate data set for whitening, so the easiest approach is to just break up X at these

boundaries.)

If you have access to an incremental QR or Cholesky algorithm, then they can

also be used in this way, with a possible gain in numerical stability.

In the wavelet case, there are a few more tricks that can be used to speed things

up even more. First, the sym4 wavelet basis is orthogonal; i.e., if W is the matrix rep-

resenting the DWT, then W TW = I . This means that when doing our FGLS iteration,

we don’t have to first construct X , perform an OLS regression, and then construct X

to perform the GLS regressions. We can define X = DWT(X),y = DWT(y) and use
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these from the beginning, because

β̂ = (XTX)−1XTy

= (XTW TWX)−1XTW TWy

= (XTX)−1XTy.

That is, if all we do is apply the DWT, then we still get the exact same result we would

have gotten from performing OLS with X itself. It’s only after we start weighting the

different decomposition scales to correct for heteroskedasticity that the OLS and GLS

estimates begin to differ.

Furthermore, we can both estimate and update these weights without redoing

any large matrix computations. Here, the trick is that instead of storing XTX , XTy,

yTy, we store a separate version of each of these matrices for each decomposition scale.

So if X0 is the matrix with the rows of X which contain approximation coefficients,

X1 has the first set of detail coefficients, etc., then we store XT
0 X0, XT

1 X1, etc. Notice

that these matrices together sum to XTX , and likewise for the other matrices we need.

If the longest contiguous stream of data which we analyze contains l samples (and as

mentioned above, this will usually be a small fraction of the total data gathered in an

experiment), then this increases our memory storage by a factor of about log2 l. Even if

we sampled at 250 Hz for an hour straight, this would still only come to an increase of

about 20 times, requiring about 40 million entries for the XTX matrices in our example

above — beginning to push the limits of a cell-phone, perhaps, but still comfortably

within the range of an ordinary computer.

Having split up our matrices in this way, we can easily reweight the coefficients

for each decomposition scale. We construct XTX for our regression by taking the

weighted sum of the individual XT
i Xi matrices, where the weights are the reciprocals

of the estimated standard deviation of the noise at each level. Then, we need to look to

the residuals to re-estimate these standard deviations for the next iteration.

The sum of squared residuals for the 3rd level of detail coefficients, say, is

yT3 y3 − 2β̂TXT
3 y3 + β̂TXT

3 X3β̂.
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This and a count of the number of rows in X3 is enough to let us compute the sample

standard deviation for these residuals.

The end result is that in the wavelet case, it’s only the initial pass through the

data constructing X that takes much time; the actual fitting process is extremely fast.
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Chapter 6

Conclusion

In this dissertation we’ve considered several questions. Why can brains process

things faster, just because they’re more predictable? How do they make these predic-

tions? And, having seen the benefits that accrued from the use of rich regression models

in chapters 2 and 3, how can we extend these to ERP analysis while respecting its unique

challenges?

In the introduction, I argued that a particular combination of approaches, —

the use of large data sets, analytical tools that reveal patterns instead of just testing

hypotheses, and a theoretical stance that allows for mechanism-neutral hypotheses — is

particularly useful for ‘scaling up’ psycholinguistics; none of these ideas are new, but I

believe they are underutilized. By now, I hope I’ve also convinced you of their merit in

shedding light on issues that would otherwise be difficult or impossible to approach (e.g.,

measuring the relationship between predictability and reading time, or detecting our

cloze participants’ habit of ignoring part of their prompt), and, particularly in chapter 4,

shown how this point of view can lead to methods which address a variety of common,

practical problems.
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