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Abstract

An asymmetrical optimal viewing position (OVP) effect in iso-
lated word recognition has been well documented, such that
recognition speed and accuracy are highest when the point
of fixation within the word is slightly to the left of center.
However, there remains disagreement as to the source of the
asymmetry in the OVP effect. One leading explanation is that
perceptual acuity in isolated word recognition is asymmetric,
falling off more rapidly to the left than to the right. An alterna-
tive explanation is that of lexical constraint: perceptual acuity
may be symmetric, but that the distributional statistics of the
lexicon are such that the letters near the beginning of a word
are on average of greater value in discriminating word iden-
tity than the letters near the end. On both these accounts, a
left-of-center fixation point optimizes the efficient accrual of
perceptual input from the word string, but for different rea-
sons. These accounts have been difficult to tease apart exper-
imentally due to the ubiquitous potential influence of lexical
constraint. Here we take a novel approach, constructing an
ideal-observer model of isolated word recognition which takes
into account word frequency information and thus intrinsically
accounts for the role of lexical constraint. Within this model,
the shape of the perceptual acuity curve is governed by free
parameters that can be estimated from purely behavioral re-
sponse data from word recognition experiments. Fitting our
model to the experimental data of Stevens & Grainger (2003),
we find that the asymmetric version, in which perceptual acuity
can differ to the left and to the right, fits human behavioral re-
sponses significantly better than symmetric versions in which
the perceptual acuity curve is constrained to be the same to
the left and to the right. Furthermore, in both parametric and
nonparametric versions of the asymmetric model, perceptual
acuity falls off more rapidly to the left than to the right. These
results support the position that the perceptual acuity curve in
isolated word recognition is indeed asymmetric.

Keywords: Psychology, Cognitive Science, Perception, Lan-
guage Understanding, Decision Making, Bayesian modeling

Introduction
Literate native speakers are exquisitely adapted to the visual
and linguistic processing of written text in their language.
The naturalistic task underlying most of this adaptation is
reading (Rayner, 1998). In the study of eye movements in
reading, one of the most striking examples of this adaptation
in the last several decades has been discovery of asymmetry
of the perceptual span: in languages which are written from
left to right, readers are more sensitive to material to the right
of the center of fixation on the page than they are to material
on the left. In languages which are written from right to left,

however, this sensitivity is reversed (Rayner, Well & Pollat-
sek, 1980). Since visual acuity per se is not itself asymmetric
(as evidenced by experimental work on perception of non-
linguistic visual inputs), the most intuitive interpretation of
this finding is that, in ordinary progressive reading, because
readers of languages written left to right have already seen
what lies to the left of their eyes, they differentially attend to
what lies to the right (and vice versa for languages written
right to left).

However, the discovery by O’Regan, Lévy-Schoen, A.,
Pynte, J. & Brugaillére (1984) of the optimal viewing posi-
tion (OVP) in isolated word recognition makes the picture
more complex. The OVP in isolated word recognition can be
succinctly described as follows: word recognition is fastest
and most accurate when the initial fixation point of the eyes
is slightly to the left of the center of the word (Figure 1a). The
discovery of the OVP launched considerable discussion as to
its nature and implications, since it cannot be obviously ac-
counted for by an asymmetry in perceptual acuity that would
be adaptive for the task.

At present, there are two leading explanations that have
been proposed for the OVP in isolated word recognition. One
is that the asymmetry of perceptual acuity to the left and to
the right within reading may affect all processing of visual
linguistic input. If acuity drops off more rapidly to the left
of the fixation point than to the right, then the best strategy
to recognize a word would be to fixate at a left-of-center
location, maximizing average acuity across the word as a
whole. Evidence supporting this position has been adduced
by Nazir, O’Regan & Jacobs (1991) and Nazir, Heller & Suss-
man (1992), who demonstrated left-right acuity differences
in tasks involving the detection of a target letter at a vari-
able position within a masking letter string (e.g., kkkkkykk).
They found that the drop-off in performance was a monotonic
function of visual eccentricity, and the left visual field showed
steeper drop-off than the right visual field (Figure 1b).

The other leading explanation was put forth by Clark &
O’Regan (1999), who argued that a better way to understand
the contributions of these different mechanisms may lie in the
distributional statistics of the written lexicon itself. They in-
vestigated the contributions of orthographic constraints, con-



(a) OVP effect (Stevens & Grainger, 2003) (b) Asymmetric perceptual acuity in letter-in-
mask recognition (Nazir et al., 2003)

(c) Asymmetry of lexical constraint (Clark
& O’Regan, 1999)

Figure 1: The OVP effect in isolated word recognition and possible explanations for it.

structing a simple measure of residual lexical ambiguity that
would hold assuming only that two letters near the fixation
point and at the end of the word are known. For a range of
word lengths in both French and English, this ambiguity mea-
sure is minimized just to the left of the word’s center, captur-
ing the OVP effect through lexical constraint without resort-
ing to an asymmetric perceptual acuity curve (Figure 1c).

It is difficult to adjudicate between these two possible ex-
planations through purely experimental means, because well-
established effects on word recognition such as those of word
frequency and neighborhood density make it is fairly clear
that lexical constraint plays a ubiquitous role in the process
but varies slightly for every word in the lexicon, making it dif-
ficult to design a word-recognition experiment that controls
for lexical constraint while testing perceptual acuity. Con-
versely, our understanding of precisely how the perceptual
acuity curve affects word recognition remains limited, mak-
ing it difficult to hold it constant and test only lexical con-
straint as a possible source of OVP effects. In this paper, we
take an alternative approach, constructing an ideal-observer
model (Marr, 1982; Anderson, 1990) of isolated word recog-
nition in which lexical constraints are assumed to be avail-
able. The perceptual acuity curve in this model is determined
by a set of parameters which are free and can be fit to behav-
ioral data using well-established techniques of statistical in-
ference. Our ideal-observer model thus allows us to “reverse-
engineer” the perceptual acuity curve active in isolated word
recognition on the basis of a lexicon (with word frequencies)
and a behavioral data set, and assess whether and how the
reverse-engineered acuity curve may be asymmetric.

Data
The dataset used in our study is from Experiment Two of
Stevens & Grainger (2003). In this experiment, words were
presented for 50ms each at various positions relative to the
center of the fixation. After presentation of each word, the
participant was asked to type the presented word back into
the computer.. The dataset contains 75 five-letter words and
105 seven-letter words and the human performance (correct-
ness of the response) for each word from seventy subjects, for
a total of 12,600 observations balanced across word identity

and fixation position. We obtained a word frequency database
from the Agence France Presse (AFP) French Corpus, which
contains French journal articles from 1993-1996. Since the
human dataset has both five-letter and seven-letter French
words, we extracted frequency counts for all five-letter and
seven-letter words in the corpus. The resulting lexicon con-
tains 14,379 five-letter French words and 21,569 seven-letter
French words.

Model
The Bayesian Reader
We use an ideal-observer model of isolated word recognition,
the Bayesian Reader (Norris, 2006, 2009). Our version of the
Bayesian Reader introduces several key assumptions regard-
ing the nature of word recognition which determine the form
of the probabilistic model:

• Word recognition is a Bayesian hypothesis test in which
prior expectations regarding what word is likely to be pre-
sented are combined with perceptual evidence d to deter-
mine posterior beliefs about what word w is being seen:1

P(w|d) =
P(d|w)P(w)

P(d)
;

• The prior probability of each word P(w) is proportional to
its corpus frequency of occurrence;

• Perceptual evidence consists of a sequence of independent
identically distributed (i.i.d.) input samples d(1), . . . ,d(N)

drawn from a NOISE DISTRIBUTION P(d|w), where sam-
ples accrue at a constant rate over time;

• If we denote the letters of a word w of length L as
w1, . . . ,wL, then an input sample d can be decomposed into
L samples d1, . . . ,dL, with di conditionally independent of
d j given wi and w j for all i 6= j, so that

1Tasks in which the decision to be made is something other than
the identity of the word—e.g., a lexical decision about whether the
input string is a word in the participant’s language—can be for-
mulated as Bayesian hypothesis tests among the possible choices
(Norris, 2006; del Prado Martı̀n, 2008).



P(d|w) =
L

∏
i=1

P(di|wi).

We will refer to the term P(di|wi) as the noise distribution
for letter wi.

Thus far, this version of the Bayesian Reader is simpler and
more general than that introduced by Norris (2006), who as-
sumed (a) a specific representation of each sample d as a point
in a high-dimensional space; (b) a multivariate Gaussian form
for the noise distribution P(d|w); and (c) a specific estimate of
the noise variance used by the ideal observer in computing the
posterior distribution over words given perceptual evidence.

Adaptation to modeling visual acuity curves
In order to adapt the Bayesian Reader to the task of estimating
visual acuity curves, however, we need to introduce a depen-
dence of the noise distribution for each letter on its physical
positioning. In particular, we assume that the noise distribu-
tion for each letter is dependent on its eccentricity as mea-
sured in number of characters from the point of fixation, with
negative values corresponding to left-of-fixation and positive
values to right-of-fixation; and on its proximities vL and vR to
the left and right edges of the word, also measured in char-
acters. If we define these physical positioning characteristics
of a letter wi as ki ≡ 〈ei,vL

i ,vR
i 〉, then its position-contingent

noise distribution can be denoted as P(di|wi,ki).
For the empirical modeling studies presented here, we

make the additional assumption that the value of

Edi|w∗
i ,ki [P(di|wi,ki)] , (1)

where Edi|w∗
i ,ki denotes expectation under the conditional dis-

tribution P(di|w∗
i ,ki) for the true letter w∗

i being presented,
depends only on k and on whether wi = w∗

i . This assump-
tion can be interpreted as stating that every letter is equally
confusable with all letters other than itself; the quantity in (1)
for wi 6= w∗

i can be interpreted as the level of confusability
of a letter as a function of its physical positioning. This as-
sumption is not necessary within the overall framework, and
indeed could be relaxed in order to incorporate letter con-
fusability matrices (Engel, Dougherty & Jones, 1973; Geyer,
1977) into the model and even to learn them directly from be-
havioral word-recognition data. In the present studies, how-
ever, this assumption greatly simplifies and facilitates both
the statistical learning problem and its computational imple-
mentation.

Learning visual acuity from word identification data
Recall that in their word-identification study, Stevens &
Grainger (2003) presented experimental participants with
five- and seven-letter words one at a time for a brief, fixed
interval too short to permit refixation, with fixation position
varying across trials. The behavioral response r in each trial

was the participant’s guess as to which word they saw. Our
goal is to use these behavioral responses to learn the depen-
dence of the visual acuity of a letter—as quantified by con-
fusability in (1)—on its physical positioning.

We model the naming task using the assumptions outlined
in the previous two sections. In general, the experimental par-
ticipant must choose their response r through some possibly
stochastic decision process based on their posterior beliefs
P(w|d,k) about what word they saw. We further assume that
the participant makes their choice of response through proba-
bility matching, so that the probability of any response r given
the word w∗ actually being presented is given by its expected
posterior probability:

P(r|w∗,k) = Ed|k,w∗ [P(r|d,k)] (2)

where Ed|k,w∗ represents the expectation marginalizing over
possible perceptual input samples given the true word and its
physical positioning. For notational simplicity, we omit the
subscript on the expectation whenever it is clear from context.

Equation (2) can be rewritten using Bayes’ rule as

P(r|w∗,k) = P(r)E
[

P(d|r,k)
P(d|k)

]
. (3)

Equation (3) is the expectation of a ratio of random variables
E[Y/X ], an expression which cannot in general be manipu-
lated exactly. Using the method of propagation of error, how-
ever, a second-order approximation for the expectation of a
ratio can be found (Rice, 1995):

E
[

Y
X

]
≈ E[Y ]

E[X ]
+

1
E[X ]2

(
Var[X ]

E[Y ]
E[X ]

−Cov[X ,Y ]
)

.

We now turn our attention to the rightmost part of this
expression, the covariance between the numerator and the
denominator—in Equation (3), these terms are P(d|r,k) and
P(d|k) respectively. Insofar as any individual word plays
only a small part in the calculation of the marginal probabil-
ity P(d|k), we would expect the covariance of this marginal
probability with P(d|r,k) to be small (with the important
caveat that because words tend to look more like each other
than like non-words, there will generally be some positive co-
variance, and its magnitude may depend on the orthographi-
cally typicality of w∗ and r). Dropping the covariance from
the above approximation allows us to approximate our poste-
rior probability as

P(r|w∗,k)≈ P(r)
E [P(d|r,k)]

E [P(d|k)]+ Var[P(d|k)]
E[P(d|k)]3

.



Ignoring the denominator (which is constant with respect to
r) and decomposing the perceptual input d into its component
independent samples at each time j and letter position i, we
obtain

P(r|w∗,k) ∝ P(r)∏
i, j

E
d( j)

i |ki,w∗
i

[
P(d( j)

i |ri,ki)
]
.

We take advantage of the identical distribution of the N sam-
ples to obtain the approximate unnormalized probability

P(r|w∗,k) ∝ P(r)∏
i

(
Edi|ki,w∗

i
[P(di|ri,ki)]

)N
.

We are now ready to take advantage of our assumption
from the previous section that each letter is equally confus-
able with all letters other than itself—that is, the value of each

of the above terms
(

Edi|ki,w∗
i
[P(di|ri,ki)]

)N
depends only on

ki and on whether wi = w∗
i . For each ki, let us denote the value

taken when wi = w∗
i as pi, the value taken when wi 6= w∗

i as
qi, and the ratio pi

qi
as li. Substituting these terms in and di-

viding the entire expression by q1 . . .qL gives us our final ap-
proximate expression for the probability of the participant’s
response:

P(r|w∗,k) ∝ P(r) ∏
i:wi=w∗

i

li (4)

where li is dependent on the physical positioning of the let-
ter in question. On the original assumption of the Bayesian
Reader that the number of input samples N accumulates at a
constant rate over time, the value log li can be interpreted as
the average rate at which perceptual information accrues at
position i.

Model parameterization and estimation
Within the context of our model, the goal of inferring a vi-
sual acuity curve from behavioral word-recognition data en-
tails estimating these input-accrual rate parameters log li. In
the studies presented here, we assume as stated before that
the log li for each letter is a function of three properties of its
physical position: its eccentricity from the fixation point, its
proximity from the left edge of the word, and its proximity
from the right edge of the word. All measurements are made
in characters. We consider two functional forms for the ec-
centricity parameters: a PARAMETRIC form in which the val-
ues of log li is assumed to follow a Gaussian curve centered at
the fixation point with maximum value α and standard devi-
ation σ; and a NONPARAMETRIC form in which each eccen-
tricity has its own arbitrary parameter value. For each form,
we consider a SYMMETRIC version in which the eccentric-
ity parameters log li are determined by the absolute eccen-
tricity, and an ASYMMETRIC version in which the parame-
ters for negative and positive eccentricity values of the same
magnitude can be different (in the parametric Gaussian case,

the asymmetric model allows different standard deviations σL
and σR to the left and the right of the fixation point). Addi-
tionally, all models include one left-edge and one right-edge
“bonus” parameter, bL and bR, added to the eccentricity pa-
rameters to determine the input-accrual rate parameters log li
for the first and last letters of a word respectively. That is, if
the fixation position is on the f -th character of the word and
the function e(·) maps eccentricities to values in log li space,
we have

log l1 = e(1− f )+bL (first letter)
log li = e(i− f ) (middle letters; i /∈ {1,L})
log lL = e(L− f )+bR (last letter)

In all cases, we fit the parameters of our models using max-
imum likelihood estimation. Fortunately, the gradient of our
model is readily calculable and allows estimation using stan-
dard gradient-descent techniques.

Results
For each of our nonparametric (−PAR) and parametric (+PAR)
models, we fit a symmetric (+SYM) and an asymmetric
(−SIM) variety to the 12,600-observation dataset of Stevens
& Grainger (2003, Experiment 2) estimation. This dataset
contains presentations of both five-letter and seven-letter
words, with every letter of each word serving as the fixa-
tion point for an equal number of trials. For each model, we
used a single set of eccentricity and edge-bonus parameters
parameters to cover all trials, giving us four parameters in the
symmetric parametric case (one maximum acuity parameter,
one standard deviation, and two edge bonuses), five in the
asymmetric parametric case (two standard deviations instead
of one), nine in the symmetric nonparametric case (seven ec-
centricity parameters and two edge bonuses), and fifteen in
the asymmetric nonparametric case (thirteen eccentricity pa-
rameters instead of seven). These models are nested in the
classical statistical sense as follows:

[−PAR,−SYM]≺{[−PAR,+SYM],[+PAR,−SYM]}≺[+PAR,+SYM]

Since we use maximum likelihood estimation with far more
observations than parameters, we can use likelihood-ratio
tests for pairwise comparisons of all models except be-
tween [−PAR,+SYM] and [+PAR,−SYM]. These tests in-
dicate that asymmetric models explain participant response
behavior far better than symmetric models in both para-
metric (χ2(1) = 250, p � 0.001) and non-parametric cases
(χ2(6) = 345.7800, p � 0.001). Among asymmetric model
variants, the nonparametric model explains participant re-
sponse behavior significantly better than the Gaussian model
(χ2(10) = 564.7, p � 0.001).

For the asymmetric nonparametric model, we estimated
standard deviations for our parameter estimates using 100
bootstrap replicates. Figure 2 graphs the value of log l as a
function of eccentricity, together with edge-bonus parameter
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Figure 2: Symmetric (dashed blue lines) and asymmetric
(solid black lines) non-parametric model parameter estimates.
Error bars on the asymmetric model parameter estimates are
standard deviations estimated from bootstrap replicates. bL
and bR are “edge bonus” parameters added to the appropri-
ate eccentricity parameters to obtain log l for the leftmost and
rightmost letters in a word.

estimates (and error bars to indicate bootstrapped standard
deviations for the asymmetric variant), for the two varieties
of the nonparametric model. Figure 3 graphs these quanti-
ties for the two varieties of the parametric model. In both
figures, eccentricity falls off to the left more rapidly in the
asymmetric model than in the symmetric model, and to the
right more rapidly in the symmetric model than in the asym-
metric model.2 This consistent pattern suggests that the data
of Stevens & Grainger (2003) provide evidence for an asym-
metry in the perceptual acuity curve in visual recognition of
isolated words even when lexical constraint is taken explicitly
into account.

Conclusion
The results of our modeling studies provide additional ev-
idence for the idea that an asymmetric visual acuity curve
contributes to the OVP effect documented in many studies
on isolated word recognition (O’Regan et al., 1984; Vitu,
O’Regan & Mittau, 1990; O’Regan & Jacobs, 1992; Stevens
& Grainger, 2003). Even while explicitly accounting for the
role of lexical constraint, we consistently found that the mod-
els which best accounted for the distribution of response ac-
curacies found in Experiment 2 of Stevens & Grainger (2003)
had an asymmetric perceptual acuity curve in which acuity
dropped off more slowly as a function of visual eccentricity
to the right than to the left. Although Stevens & Grainger
(2003) also presented results of another experiment using the
letter-within-mask identification task which called into ques-

2In the nonparametric model, the most extreme eccentricities
have oddly-behaving parameter estimates that indicate possible
problems with model specification, perhaps because the edge bonus
parameters are so often implicated in model predictions for these ex-
treme eccentricities. We expect that fitting the nonparametric model
to behavioral data involving presentation of words of a larger variety
of lengths would be likely to reduce or eliminate this problem.
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Figure 3: Symmetric (dashed blue lines) and asymmetric
(solid black lines) parametric model results, assuming that
eccentricity is piecewise Gaussian centered around the fixa-
tion point. bL and bR are “edge bonus” parameters added to
the appropriate eccentricity parameters to obtain log l for the
leftmost and rightmost letters in a word.

tion the generalizability of the findings of Nazir et al. (1991,
1992) regarding asymmetry of the perceptual acuity curve,
the fact that an asymmetric perceptual acuity curve is required
to provide the best account for their word-recognition data
by an ideal observer with the knowledge of lexical statistics
of the language calls into question the strong position staked
out by Clark & O’Regan (1999) that the left-of-center posi-
tion of the OVP may derive purely from lexical constraint.
In our view, the most plausible theoretical position reconcil-
ing our modeling findings with empirical findings from the
reading literature on the asymmetric perceptual span (Rayner
et al., 1980) and with those of Stevens & Grainger (2003)
on character-within-mask recognition is that isolated word
recognition does indeed involve an asymmetry of perceptual
acuity, but that it is a parasitic byproduct of cognitive adapta-
tion to the naturalistic task of reading. The character-within-
mask recognition task may be sufficiently unlike naturalis-
tic reading that it does not trigger this asymmetric perceptual
span. It is worth noting that the experiments of Nazir et al.
(1991) and Nazir et al. (1992) always involved fixation on
the leftmost or rightmost character of the word, and used a let-
ter (instead of the hash mark # used by Stevens & Grainger)
as the mask character. It is possible that the lower overall
visual acuity due to fixation at the word’s right or left edge
together with the letter mask may have induced the language
and perceptual systems to categorize input in this experiment
more like that obtained in natural reading, inducing asymmet-
ric perceptual acuity.

Although we believe our modeling approach represents an
important step forward in resolving these issues, it is impor-
tant to emphasize that several simplifying assumptions we in-
troduced which led from the general ideal-observer formula-
tion to the specific, highly tractable model of Equation (4)
have the potential to significantly affect our modeling results
and deserve more careful consideration in the future. The first



of these simplifying assumptions was equal confusability of
letter pairs. Of course, it is well known that some letter pairs
are more confusable than others (e.g., o is much more con-
fusable with e than with l for native English speakers; Geyer,
1977). It is possible that the assumption of equal confusabil-
ity could interact with the lexical statistics of French and the
items chosen by Stevens & Grainger (2003) to create a con-
found in the explanation of our modeling results—for exam-
ple, such a confound might arise if the letters near the end of
their items were more highly confusable than the letters near
the beginning of their items. This possibility can be explored
in future work by relaxing the assumption of equal confus-
ability and using established letter confusion matrices to scale
our model parameters, or even to allow our model to learn
confusability parameters directly from word-recognition be-
havioral data.

The second simplifying assumption deserving discussion
is that participants’s behavioral responses arose from prob-
ability matching. In other cognitive domains, this assump-
tion seems to have reasonable theoretical and empirical sup-
port (Vulkan, 2000; Mozer, Pashler & Homaei, 2008; Vul &
Pashler, 2008; Vul, Goodman, Griffiths & Tenenbaum, 2009).
That being said, it is entirely possible that participants’ re-
sponses may reflect maximization or some other similar de-
cision process, and that most inter-trial response variability
derives from the variation inherent in noisy perception. The
consequences of this possibility may be explored in future
work within our framework by explicit simulation of inter-
trial noise instead of marginalizing over perceptual input as
we have done here.

The final simplifying assumption is that of minimal co-
variance between the probability of noisy perceptual samples
given the word under consideration and the marginal proba-
bility of those perceptual samples. As discussed earlier, this
assumption is clearly wrong insofar as words in any given
language tend to look more like each other than like non-
words; but the sheer number of words in the lexicon, com-
bined with the considerable variability that does exist among
wordforms, implies that this covariance should in general
be rather small. It is also not obvious to us how this sim-
plifying assumption might introduce a confound to our spe-
cific result of an asymmetric perceptual acuity curve in iso-
lated word recognition. Nevertheless, there are two ways that
this simplifying assumption could be relaxed in future work.
First, explicit simulation of inter-trial noise would permit us
to quantify the discrepancy between the simplified results
we report here and the results which would obtain under the
model more generally. Alternatively, we might try to quantify
the covariance between P(d|w,k) and P(d|k) through explicit
simulation, and then use these covariance estimates to adjust
our expectation-based model directly. This latter alternative
might have the added benefit of giving us more direct in-
sight into the full range of top-down effects that are present in
word recognition. Intuitively, this covariance should be larger
for more “prototypically word-like” words, which should de-

crease the expected posterior belief for such words relative to
less word-like words, a sort of second-order neighborhood-
density effect. Further elucidation of all these issues awaits
future research.
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