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Abstract

A companion paper introduced the rERP framework, which recasts traditional event-related potential (ERP) averaging

as a special case of a more flexible regression-based approach to estimating ERP waveforms. Here, we build on this

foundation, showing how rERP analysis can also handle the estimation of nonlinear effects (a generalization of both

the well-known approach of dichotomizing continuous covariates, and also of the ERP image technique), and can

disentangle overlapping ERPs to temporally adjacent stimuli. We then consider how the use of rERPs impacts on other

parts of the EEG analysis pipeline, including baselining, filtering, significance testing, and artifact rejection, and

provide practical recommendations. Free software implementing these techniques is available.

Descriptors: Other, Language/Speech, Normal volunteers, EEG/ERP

As detailed in a companion article, the rERP framework provides a

flexible way to adapt well-known regression techniques to the

problem of estimating event-related brain potential (ERP) wave-

forms. Here, we first examine how this framework can be used to

estimate nonlinear relationships between covariates and scalp

potentials, and find that it generalizes both the common approach

of dichotomizing/binning continuous covariates, and the ERP-

image technique (Jung et al., 2001; Lorig & Urbach, 1995). Next,

we show how regression’s ability to distinguish partially con-

founded effects can be exploited in order to separate overlapping

ERPs time-locked to temporally adjacent events. Finally, we dis-

cuss the practical considerations of baselining, filtering, signifi-

cance testing, and rejecting artifacts in the rERP context. A list of

free software packages implementing these methods is available at

http://vorpus.org/rERP.

To illustrate these techniques, we use EEG data recorded by

Urbach and Kutas (2008) from seven undergraduate participants

engaging in a speeded go/no-go task, focusing on 673 artifact-free

“go” trials.1 Our question is how the scalp potential at a midline

parietal site differs between trials with different response times

(RTs). A preliminary analysis using traditional techniques (Fig-

ure 1) reveals a complex pattern, in which the three faster bins all

show a positive peak at around 350 ms, but with variable latencies

and different drop-offs, and the slowest bin remains flat from

200 ms onwards. Even after 800 ms, the four waves all remain

rather different. In the next two sections, we demonstrate different

ways that rERP analysis can be used to elicit more insight from

such messy-seeming data.

Discovering Nonlinear Relationships Via Splines

Slope rERPs, as introduced in Smith & Kutas, 2015, provide a nat-

ural mechanism for analyzing continuous covariates like RT, but

make a very restrictive assumption: that the scalp potential will at

each latency vary linearly with the covariate. This is unlikely to be

strictly true in most cases, and often we will not know what rela-

tionship actually holds. Fortunately, regression provides a standard

set of techniques for estimating nonlinear relationships from data.

These techniques are powerful and, when used appropriately,

can do anything that a simple linear model can do and more. How-

ever, this power does come at a cost in conceptual complexity, and

their use may therefore demand greater sophistication on the part

of the analyst, her analysis software, and her audience. So, before

describing their application to EEG analysis, we want to emphasize

that they are likely to add more value in some situations than

others.
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Do You Need Nonlinear Regression?

The assumption of linearity is not so arbitrary as it may seem, and

may in fact be a viable simplifying approximation in many cases.2

Most relationships seen in the real world are smooth to a greater or

lesser extent. (Smooth means that nearby points have similar val-

ues; the more a curve jumps or wiggles, the less smooth it is.)

Locally, smooth functions can be reasonably approximated by a

linear function. Furthermore, while U-shaped relationships do

occur, they are the exception, rather than the rule. Most relation-

ships are monotonic. If the factor we are studying has a monotonic

effect on the ERP, and if all we care about is detecting whether or

not an effect exists and determining its overall directionality, then a

linear model may not be optimal, but it will get the job done.

Even if we are interested in the detailed shape of some relation-

ship, we may not have enough data to estimate it. When we relax

our linearity assumption, we still must make some assumptions

about the range of possible curves. Otherwise, we cannot rule out

pathological curves that, for instance, pass through every single data

point. While there are a variety of techniques used to accomplish

this, they generally take the form of somehow requiring our curves

to be simpler and less wiggly. The fewer data points we have, the

stronger these assumptions must be. When our data are sufficiently

limited, we may find ourselves required to use constraints so strong

that we are effectively doing linear regression after all. In such sit-

uations, again, we lose little by using conventional linear regression.

On the other hand, there are situations where it’s particularly

valuable to allow the regression model the flexibility to choose a

nonlinear relationship to match our data. The most obvious is when

discovering the shape of the relationship is itself a target of our

analysis (e.g., Smith & Levy, 2013). A less obvious case occurs

when our analysis includes control covariates—covariates whose

effect we don’t actually care about, but which are correlated with

covariates that we do care about. For such covariates, we aren’t

particularly worried about giving them too much flexibility and

allowing them to overfit the data—we don’t plan to interpret them,

and the worst that could happen is that they soak up more variance

than they really deserve. This should be done in moderation, of

course, but just as it’s better to err on the side of including control

covariates you don’t need, it’s better to have a model that is a little

too flexible than a model that is a little too inflexible. Too inflexi-

ble a model may fail to fully account for the control factor’s real

effect, leaving some portion of it to be spuriously explained by the

factors we do care about. Similar remarks apply to analyses of

interactions between multiple covariates. In particular, a term rep-

resenting the quadratic (nonlinear) effect of one covariate will be

partially collinear with terms representing linear interactions

between this covariate and other covariates that are correlated with

it. If our model includes only the interaction terms but not the non-

linear terms, then we may get spurious results.

The third case where a nonlinear model is crucial is when we

have reason to believe that our covariate may show a U-shaped

effect. This is obvious, but in the rERP context, there is a less

obvious consequence: if some covariate affects the latency of a

component, then that covariate will effectively produce a U-shaped

effect at some time points. An example occurs in Figure 1: at

around 400–600 ms in the ERP, we see more positivity for

medium-length RTs as compared to both short or long RTs. This is

a U-shaped effect of RT on ERP amplitude, and so using a slope

rERP to analyze the effect of RT here would be inappropriate.

There is a large literature on nonlinear regression; our goal is to

show specifically how the basic idea of nonlinear regression (how-

ever implemented) applies to ERP analysis. Therefore, we give

only a brief introduction here; for more information, see, for exam-

ple, Wahba (1990) or Wood (2006).

The Spline Trick

In order to fit nonlinear models with linear least squares regression,

we need a trick. That trick is to pick some particular set of basis

functions, f1(x), . . . , fk(x), which are selected so that taking

weighted sums of them, a1f1(x) 1 ���1 akfk(x), lets us construct a

wide variety of nonlinear curves. Different sets of basis functions

lead to different spaces of possible curves; the idea is that our

regression fit will choose from these curves to pick the one that

best matches the data. There are some good standard basis sets that

are generally used. We must also decide how many basis functions

Figure 1. ERP waveforms from our example go/no-go response time task, with go trials broken down into four equal-sized bins by response time

(RT), together with no-go trials for comparison.

2. We already make this linearity assumption in other situations
when analyzing ERP data. For instance, when choosing words to use in
a language experiment, we often want to choose two sets of words that
are matched on a large number of word properties that would otherwise
become possible confounds, such as cloze probability or frequency.
Ideally, we would choose pairs of words such that each pair was per-
fectly matched on all of these properties, but in practice we instead set-
tle for ensuring that the average value of these properties is matched
between the two groups. The reasoning is that if these properties are the
same on average, then they cannot cause any differences in the ERPs
between our two sets—which is only justified if we also assume that
these properties have a linear effect on the ERP. If frequency has a non-
linear effect on the ERP, then the average ERP to a set containing one
word with frequency 10 and one word with concreteness score 30 may
not be the same as the average ERP to a set containing two words that
both have frequency 20, even though the average frequency is the same
in both cases.
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we wish to use, since the more we use, the more flexible our space

of possible curves—and the more data we will need to use to get

sensible estimates. Two possible basis sets are shown in Figure 2,

along with examples of the curves they can produce.

But having selected our basis functions, how do we convince

our regression model to actually do the fitting? It’s surprisingly

simple: we define a set of k different predictors, one for each basis

function:

x1i 5 f1ðRT on trial iÞ

x2i 5 f2ðRT on trial iÞ
�

xki 5 fkðRT on trial iÞ

Now the least squares fitting will, as usual, find whatever set of

weights b1, . . . , bk causes these transformed predictors to work

together to best match our data. As far as the fitting process is con-

cerned, these are b coefficients like any others. But these individual

bs are generally not very interpretable on their own; instead, we

interpret them as together selecting the single curve in our space

that best fits the data: the curve b1f1(x) 1 ���1 bkfk(x). We’ve

fooled a linear technique into fitting a nonlinear curve.

What basis functions should we use? The simplest option is to

divide up the possible values for our factor into several nonoverlap-

ping ranges. For each range, we define one basis function as

fjðxÞ5
1; if x falls into the jth range of values

0; otherwise

(

(Figure 2a). By taking weighted sums of these functions, our

regression model is able to construct any function that is

piecewise-constant on these ranges (Figure 2b). Notice that when

we then use these basis functions to make predictors xji, these pre-

dictors will be very similar to dummy- or treatment-coded categori-

cal predictors; we can think of them as indicating categorically

whether our factor of interest falls into a particular range on each

trial. Using this set of basis functions is therefore equivalent to the

common practice of splitting a continuous covariate into two or

more bins (e.g., a median split) and then averaging across each bin,

that is, dichotomizing, as we did in Figure 1.3

But while a step-function basis is simple, it produces rather

odd-looking staircase functions, which seem unlikely to actually

represent any real brain response. A more standard way of con-

structing a basis for this kind of regression would be to use higher-

order spline functions. There are a number of different families of

splines (which you choose usually matters little in practice), but

cubic B-splines are one of the most popular (Figure 2c). Splines

have two desirable features: first, like the step functions we saw

earlier, each basis function covers a fairly short range of the data,

with minimal overlap. (In fact, our step functions themselves are a

special case of splines, but built out of zero-degree constant func-

tions instead of the cubic functions that are more commonly used.)

As a result, the behavior of our fitted curve near any particular

value will primarily be determined by the data that we actually

observed near that value, since only those data points are able to

affect the relevant b coefficients. But, unlike the step functions,

they produce more realistic—and thus, potentially more accurate—

smooth curves (Figure 2d).4 As with traditional dichotomization,

we can vary the size of the bin covered by each basis function by

adjusting parameters called knots; in the case of the step functions,

the knots are simply the break points in our dichotomization.

rERP Spline Regression

Figure 3 shows a nonlinear rERP analysis of the go trials from

our go/no-go data. With standard ERPs or slope rERPs, each

covariate has a single b value associated with each latency, and

we can plot these values as a waveform. Nonlinear rERPs are

harder to visualize, because at each latency we are now estimat-

ing an arbitrary curve representing the nonlinear effect our

covariate has on the scalp potential. Or, put another way, for

each of the infinitely many possible values of our covariate, we

have a potentially distinct ERP waveform. So, to visualize non-

linear rERPs, instead of plotting individual waveforms, we use

false-color images. In these figures, latency relative to the time-

locking event runs along the x axis, and response time varies

along the y axis. Each horizontal slice of the figure represents

the predicted ERP waveform for a particular RT (compare

a b c d

Figure 2. Two possible sets of basis functions for use in fitting nonlinear curves to data. a: A step-function (zero-degree B-spline) basis with four

functions. By taking weighted sums of these functions, we can construct a variety of piecewise-constant curves. b: Two examples of such curves, as

might result from fitting a regression model. c: A cubic (third-degree) B-spline basis with four functions. By taking weighted sums of these functions,

we can construct a variety of smooth curves. d: Two examples of such curves, as might result from fitting a regression model.

3. And just as with treatment-coded categorical predictors, in practice
we generally drop one spline basis function from our analysis in order
to avoid creating perfect collinearity with the intercept term.

4. Another common practice is to use a polynomial basis, i.e., one in
which f1(x) is a linear function, f2(x) is a quadratic function, etc. This
approach does produce smooth curves, but it fails on our first criterion:
aberrations in the data in one localized region might cause the entire fit-
ted curve to change radically. This is a significant obstacle to interpret-
ing and trusting the results of polynomial regression; splines are
generally preferred.
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Figure 3a to Figure 1; these two figures depict the same analysis

in different ways). Each vertical slice of the figure represents

the estimated nonlinear relationship between RT and scalp

potential at one particular latency (comparable to Figure 2b,d).

Figure 3a,b demonstrate nonlinear rERPs using step-function

and cubic B-spline bases, respectively. In these figures, there is a

diagonal pattern visible in the 400–600 ms range, running roughly

parallel to the black RT line. This diagonal pattern is what a latency

effect looks like. But unsurprisingly, this is absent in the linear

(slope) rERP predictions plotted in Figure 3c. As discussed above,

latency effects create U-shaped effects at specific latencies, and

because a slope rERP cannot capture U-shaped effects, the esti-

mated slope coefficient during this period is essentially zero. This

is another example of how slope rERPs are analogous to difference

waves: if we had divided our RTs into just two bins and computed

their difference, then the difference wave in this region would have

been near zero.

On the right of each image, we plot a histogram showing how

much data were available in different parts of the range of RT val-

ues. In general, the nonlinear curves will be more trustworthy in

areas where more data are available, and we accordingly arrange

our basis functions to allow more flexibility in these regions. This

is equivalent to the standard practice of choosing dichotomization

boundaries so as to produce equal-sized bins, rather than spacing

boundaries equally in covariate space.

Finally, Figure 3d demonstrates for comparison the ERP image

technique (Jung et al., 2001; Lorig & Urbach, 1995). An ERP

image is produced by sorting trials according to some factor of

interest (RT, in this case), and stacking the raw data from these tri-

als vertically. Then, we use a moving average to smooth out the

raw data measured at each latency on adjacent trials, and plot the

results as a two-dimensional pseudocolor image. This smoothing

serves exactly the same purpose as our use of a limited set of basis

functions, in that it allows us to pool data from trials with similar

ba

c d

Figure 3. Four ways of analyzing the nonlinear effect of response time on scalp potential. In these plots, each horizontal strip represents the predicted

ERP for a given RT, while each vertical strip shows how the predicted ERP at a particular latency varies with RT or trial number. Black lines indicate

where the response (button press) occurs within each epoch, and a histogram on the right shows how many trials were observed with each RT. a:

Regression using a step-function basis set containing four step functions. This is equivalent to the standard approach of splitting the data into four

equal-sized bins and calculating the average over each; this figure is simply a different way of visualizing the go curves from Figure 1. b: Regression

using a cubic B-spline basis set with four basis functions. c: Predictions from simple linear regression (slope rERPs). d: An ERP image of the same

data for comparison (trials are sorted by RT, then vertically smoothed by a Gaussian-weighted moving average with r 5 100 trials). (a), (b), and (c)

are rERP analyses; (a) and (d) are previously described methods from the literature.
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RTs, to reduce the effect of noise while still being able to see what-

ever nonlinearities are present. In fact, while we focus here on the

basis function approach for its simplicity, the use of such nonpara-

metric smoothers is a well-studied alternative technique for

peforming nonlinear regression (Hastie & Tibshirani, 1990). Con-

ceptually, the main difference here between the ERP image and the

rERP estimates is the y axis. For the ERP image, this is the trial

number; we can think of the ERP image as a nonlinear rERP that

has been stretched and squished vertically in order to flatten out the

latency distribution over the y axis. Thus, if we had seen exactly

the same brain responses but a different distribution of RTs (per-

haps in another condition), the ERP image might look very differ-

ent. For the rERP estimate, the y axis is the RT itself; a different

distribution of RTs would potentially make our estimates more or

less accurate at different points on the y axis, but the image itself

would remain comparable across conditions.5

The rERP approach is also more general than ERP images. Fig-

ures 3a–3c were all produced by the same software routine; all that

had to be changed was a single line specifying the predictors to be

used. We could just as easily have added additional controls, or

simultaneously estimated the nonlinear effects of multiple partially

confounded covariates like word expectancy and word frequency,

neither of which are possible with traditional ERP images.

To keep this example manageable, we’ve used only a small num-

ber of basis functions, which is equivalent to assuming that the

underlying relation between RT and scalp potential is relatively

smooth. In general, though, this is a parameter of our analysis that

we can vary, and it results in a trade-off. As we add more flexibility

to our model, we find ourselves trying to extract more information

from a fixed amount of data. At one extreme, one could enter a dif-

ferent dummy-coded predictor for every stimulus that appears in the

experiment. If we had unlimited data, this might even be the best

option; in some experiments, every stimulus is, in fact, different

(Laszlo & Federmeier, 2011). But in practice, such an analysis will

rarely be useful. Instead, we have to strike a balance: as we weaken

our model’s assumptions, we increase the chance that it can accu-

rately represent reality—but these assumptions about the form of the

relationship between stimulus properties and brain response are

exactly what allows the model to compare data across multiple trials

to distinguish signal from noise. So, we have to strike some trade-off

that allows us to pool data across multiple trials without introducing

unacceptable biases. One of the great advantages of regression mod-

els is that they let us move mindfully between these extremes, and in

cases where we do have a large amount of data, they allow us to use

relatively mild assumptions and let the data speak.

More sophisticated regression strategies can make this trade-off

by automatically optimizing some measure of overfitting based on

the data itself; see Wood (2006) for details. These techniques have

previously been applied to electroencephalography (EEG) by Hen-

drix (2009), Hendrix, Bolger, and Baayen (2014), Kryuchkova,

Tucker, Wurm, and Baayen (2012), Tremblay (2009), and Trem-

blay and Baayen (2010).

Nonlinear rERPs are potentially applicable to any continuous

covariate: RT, word expectancy or frequency, visual eccentricity,

tone loudness, etc. In Figure 3, though, the parallelism between the

black RT line and the dark red diagonal of increased positivity sug-

gest that what we have in this case may be two overlapping effects:

one time-locked to the stimulus, and the other time-locked to the

response (Jung et al., 2001). So this analysis suggests that an even

better approach in this instance might be not to use a generic non-

linear rERP, but to model this overlap explicitly. In the next sec-

tion, we demonstrate how this can be done.

Overlap Correction

ERP activity often lasts for a second or more beyond the time-

locking event. A lot can happen in a second. In a response time

task, participants may respond; in a language comprehension study,

several more words may be presented; in ordinary life, the average

second contains a rich, multidimensional stream of sensory stimu-

lation, multiple visual saccades, and other complex motor actions.

If there are multiple events happening within a single second, and

ERPs to these events last for a second or more, then these ERPs

must be active simultaneously—they overlap.

There are often practical advantages to presenting stimuli with

short interstimulus intervals (ISIs). Short ISIs allow investigations

into interactions between the processing of successive stimuli (e.g.,

priming and habituation effects), improve performance on selective

attention tasks, and make it possible to collect more data in a lim-

ited amount of time (Woldorff, 1993). But the traditional averaging

technique provides no reliable way to isolate and reconstruct the

ERPs attributable to temporally adjacent events. Particularly perni-

cious are situations in which adjacent stimuli have properties that

are correlated with each other, creating a new kind of confounding

problem. Previously, we’ve discussed situations where there is con-

founding between the different properties of a single event (e.g.,

word frequency is correlated with word expectancy), and thus

effects that are caused by one may be incorrectly attributed to the

other. But equally problematic is confounding between properties

of adjacent events. For example, in naturalistic English text, the

frequency of word n is correlated with that of word n 1 1. If we’re

not careful, then in a sentence reading experiment we may con-

clude that we have found an ERP effect of word frequency at, say,

100 ms poststimulus onset, when in fact the component in question

is driven by the frequency of the previous word at a later latency.

Woldorff (1993) discusses analogous problems with confounding

that arise in selective attention experiments, where, for example, in

a design with “attend to visual flash” and “attend to auditory click”

conditions, the estimated ERP for unattended auditory events will

be contaminated by overlap with attended visual events, while the

estimated ERP for attended auditory events will be contaminated

by overlap with unattended visual events. An apparent effect of

attention on auditory processing thus might actually arise from an

effect of attention on visual processing, and vice versa.

The simplest method to reduce the effect of overlap is to ran-

domly vary (jitter) ISIs, which “smears” the contributions of adja-

cent events to the ERP estimate. This provides only a partial

solution at best. The best known technique for further correcting

ERP estimates for overlap is Adjar (Woldorff, 1993), which is a

relatively complex procedure requiring the manual computation of

a number of successive approximations with uncertain accuracy.

The technique proposed here is similar to Adjar in spirit, but lets

the computer do the work of finding exact solutions automatically,

and allows us to use results from the regression literature to guaran-

tee theoretical rigor and characterize the conditions required to

achieve accurate results. And, because it is part of the general

rERP framework, the technique applies equally well to standard

ERPs, slope rERPs, nonlinear rERPs, and combinations of these.

Techniques related to the one proposed here have previously

been used for estimating hemodynamic response functions in

5. If we really wanted to reproduce the traditional ERP image’s
stretching and squishing, we also have the option of computing a nonlin-
ear rERP, but entering rank RT as our predictor instead of raw RT.
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event-related fMRI (Hinrichs et al., 2000), and analyzing skin con-

ductance responses (Bach & Friston, 2013).

Encoding Overlap in a Regression Equation

From by-epoch regression to continuous-time regression.

Previously, we calculated rERPs by fitting a separate regression

model for each latency, and then collected the resulting b coeffi-

cients from each model together to form individual waveforms.

The first step to accomplishing overlap correction is to combine

these many regression models into a single, giant model. To do

this, we use the same “zero trick” that we used in the companion

article (Smith & Kutas, 2015) to combine two intercept-only

“classic” ERP models into a single model with dummy coding.

There, this trick was used to replace the binning process, so that

instead of dividing our events into separate groups before analysis,

the division effectively happened as part of the regression fitting.

Now we’ll replace epoching in a similar manner, giving a regres-

sion model that is applied directly to continuous-time EEG.

If we have data for N trials, P predictors, and L distinct laten-

cies, then before, we would fit L different regression models, where

each regression model had entries of the form:

ytrial 1;latency 0 5 b1xpredictor 1@trial 11 � � �1 bPxpredictor P@trial 1

�
ytrial N;latency 0 5 b1xpredictor 1@trial N 1 � � �1 bPxpredictor P@trial N

To coalesce these models into one, we have to replace each of our

P predictors xpredictor p by L new predictors xpredictor p, latency l, giv-

ing P 3 L predictors in total. The b value for xpredictor p was in the

model for latency l. Since we’ll be fitting our new model on all of

the original ytrial i, latency l data points, without epoching, we have to

define what values these predictors take for each of N 3 L data

points, as follows:

xpredictor p;latency l1@trial i;latency l25
xpredictor p@trial i; if l15l2

0; otherwise

(

This looks complicated, but all it’s doing is saying in regression

language that, when we want to predict the scalp potential at

100 ms after some time-locking event, we should multiply the pre-

dictor values for the event we’re looking at by the b values that are

100 ms into our rERP waveform, and ignore the other b values.

The overall process is shown schematically in Figure 4. By itself,

this transformation has no effect whatsoever: fitting this model

once will give exactly the same results as fitting each of the L origi-

nal models one at a time. The only differences are that we get our

entire waveforms in one go, instead of having to assemble them

one point at a time, and that our computer will have to work a bit

harder—fitting these models takes a few seconds instead of tens of

milliseconds.

One way to interpret our new, expanded predictors is as interac-

tions between our original per-event predictors, and a second

dummy-coded predictor that is 1 for data points measured at a cer-

tain latency from the time-locking event, and 0 otherwise:

xpredictor p;latency l@data point d 5 xpredictor p;event i 3 xlatency to event i is l@data point d

Like any dummy coding scheme, this approach allows our model

to make independent estimates for each value of our predictor.

When our predictor is latency, this means we are allowing the

waveform to vary arbitrarily from one time point another, con-

strained only by the data. Now that our model is written in this

form, though, we can consider using other codings instead. For

example, we could impose a smoothness constraint on our rERP

waveforms by encoding the latency predictor using a spline

basis—and doing exactly this is one component of the generalized

additive modelling approach used by Hendrix (2009), Hendrix et al.

(2014), Kryuchkova et al. (2012), Tremblay (2009), and Tremblay

and Baayen (2010). However, this is not as advantageous as it

might at first appear. Encoding latency with a spline basis is essen-

tially a way of applying noncausal smoothing to our ERP wave-

forms a priori before estimating them, which is not generally

recommended (Luck, 2005). Like all smoothing, it will introduce

distortions; but, unlike the use of post hoc low-pass filtering, which

allows us to directly compare before and after waveforms, the con-

sequences of spline-based smoothing may be hard to understand,

especially when the degree of smoothing is selected by a method

that is automatic, and thus opaque. And the usual justification for

spline smoothing—that it allows us to pool data from similar meas-

urements, amplifying the signal while reducing the noise—applies

Figure 4. An illustration of the procedure for converting a set of separate regression models for different latencies into a single combined model for

all latencies, as required for overlap correction. On the left, we see three of the models that previously we would have fit to different subsets of our

data. (The particular latencies shown reflect a 250 Hz sampling rate.) On the right, we see how they are combined by, for each model, replacing each

predictor by a new one that takes on the same values on the subset of data that its model was previously fit to, and zero elsewhere.
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only weakly here. In EEG recordings, the noise at adjacent time

points may be just as similar as the signal is; to really increase our

signal-to-noise ratio we have to pool data from multiple events that

are more widely separated in time.6 Therefore, for now we recom-

mend sticking with the dummy-coded latency approach described

above, which is the direct analogue to traditional ERP averaging in

the continuous regression setting.

Overlap as confounding. Once we have combined our regression

models into this expanded form, it’s easy to see how to correct for

overlap. Overlap occurs when a single EEG measurement (y value)

is affected by multiple events—say, event 1 occurred 500 ms

before this measurement, and event 2 occurred 100 ms before this

measurement. If we assume that the ERPs to event 1 and event 2

sum, then this means that measurement y is

y 5 ERP to event 1500 ms 1 ERP to event 2100 ms 1 noise:

But the ERP to event 1 at 500 ms is simply the b values for 500 ms

multiplied by the predictors for event 1, and similarly for the ERP

to event 2 at 100 ms. To represent this overlap, in the combined

model we allow the combined-model predictors for 500 ms to take

on the appropriate values for event 1 at the same time as the

combined-model predictors for 100 ms take on the appropriate val-

ues for event 2. More formally, we adjust our predictor definition

like so:

xpredictor p;latency l@data point d

5

xpredictor p@event i; if d was measured l ms after some event i

0; otherwise

8<
:

This transforms the problem of disentangling overlapping ERPs

into the problem of disentangling partially confounded predictors

in a regression model, and, as discussed in the companion article

(Smith & Kutas, 2015), least squares fitting solves such problems

automatically. In essence, the fitting process will consider all possi-

ble b waveforms, and pick the ones that best match the data after

being time-locked to successive events and summed.

Under what circumstances should we expect this to work? We

do not currently have a way to calculate precise variance inflation

factor (VIF) values for continuous-time regression, because to be

done properly this will have to take into account the temporal

dependencies in the EEG background noise.7 Nonetheless, the fun-

damental rule of partial collinearity still holds: the higher the corre-

lations between our predictors, the more data are needed. In

practice, there are two mechanisms that reduce collinearity

between our expanded predictors: variation in ISI, and differences

between stimuli. This is intuitive. If our experiment always uses an

ISI of 500 ms exactly, and our stimuli are identical, then no method

will ever be able to tell whether some component in the EEG

occurs at 100-ms latency to one event versus 600-ms latency to

another, because these latencies always co-occur. In the regression

model, this means the predictors xpredictor p, 100 ms and xpredictor p,

600 ms will have identical values for every data point, creating per-

fect collinearity (aside from the first and last trials). But if we add

some trials that use different ISIs, then on those trials there will be

data points where one of these predictors is zero and the other is

not, breaking the collinearity. The more variation there is in our

ISI, the less correlated our predictors will be, and the better least

squares will be at correcting for overlap.

But even if we have a fixed ISI, all is not lost. A fixed ISI

means that the expanded predictors for the 100-ms and 600-ms

latencies will always be zero or nonzero at the same times. But

when they are nonzero, their values are determined by the corre-

sponding events. If our predictor reflects word expectancy, for

example, then the 100-ms predictor will reflect the expectancy for

word n at the same time the 600-ms predictor reflects the expect-

ancy for word n 2 1, and these values will generally be different,

again breaking the perfect collinearity. The extent to which this

form of variability will help, of course, depends on the predictors

in question. If the original predictors are entirely uncorrelated

between nearby events, then our expanded predictors will be

orthogonal; in this case, applying overlap correction is harmless

but unnecessary. If the predictors are perfectly correlated, then jitter

is our only hope. But if we have partial correlation between nearby

events, then overlap correction can potentially be both effective

and useful even in the absence of ISI variability. This may differ

on a predictor-by-predictor basis within a single model; intercept

terms, for example, never vary across stimuli, and thus require jitter

to estimate. But as we saw before, collinearity problems affect only

the collinear predictors,8 and for some questions it may not matter

how poorly estimated the intercept bs are so long as the other bs

are estimated reliably.

Best of all, for overlap correction purposes, is to have as much

variability as possible in both the ISI and the stimuli. Naturally,

this must be balanced against other experimental considerations,

and as long as there is enough variability somewhere, and we have

enough data, then overlap correction can work. In any case, the

least squares fitting process will automatically take full advantage

of whatever variability is present, without any need for human

intervention.

Simulation

At least, that’s what the theory says. To verify this, we simulated

three experiments involving high degrees of overlap. In the first, a

continuous train of identical stimuli is presented, with each ISI ran-

domly selected to fall between 200 ms and 400 ms in increments of

16.7 ms (the achievable ISIs for visual presentation using a monitor

with a 60 Hz refresh rate). We time-locked a known ERP wave-

form (1,100 ms long) to each stimulus, and summed these time-

shifted ERPs with phase-shuffled EEG background noise to pro-

duce simulated recordings. We then attempted to estimate the ERP

from these simulated data, both with and without overlap correc-

tion. In this experiment, each data point has an average of 3.8

simultaneous ERPs overlapping with it.

The second simulated experiment is similar to the first, except

that we used a fixed ISI of 300 ms, and now the stimuli themselves

vary along an arbitrary continuous dimension (a stand-in for prop-

erties like visual contrast or expectancy), and this variation has a

linear effect on the evoked potential:

6. Correlations between the EEG noise at nearby time points will
also tend to thwart automatic smoothness selection methods (Wood,
2006), reducing their ability to prevent overfitting.

7. A useful target for further research would be to derive a VIF-like
formula that will predict ahead of time how badly overlap impacts an
arbitrary experimental design, as compared to a similar design without
overlap, while taking into account the 1/f structure of the EEG back-
ground noise (Smith, 2011).

8. A demonstration on simulated data is given in the supporting
information.
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Stimulus ERPn 5 Intercept rERP

1 Stimulus propertyn 3 Slope rERP

The simulated stimulus properties were selected so that on average

across the experiment they are centered around zero, but on adja-

cent trials are highly correlated (r 5 0.9); thus, the effect of event n
is confounded with the effect of event n 2 1. This is similar to what

occurs when, for example, trying to estimate the effect of word fre-

quency for word-by-word presentation of naturalistic text (though

our simulation has much higher item-to-item correlation, making

the overlap correction problem more challenging). As discussed

above, with a fixed ISI it is impossible to reliably estimate the

intercept rERP, and our estimates of this waveform were highly

noisy (see online supporting information), but the slope rERP in

the same model can be estimated reliably, even with this high

degree of correlation and high degree of overlap.

The third simulated experiment is identical to the second,

except that we replaced the fixed ISI with one that varied between

200–400 ms as in the first experiment.

The results, using 2,000 trials (�10 min) of simulated data, are

shown in Figure 5. As expected, we find that if we omit overlap

correction our (r)ERP estimates are entirely wrong. With overlap

correction enabled, our method is able to recover the correct wave-

form even under these rather adverse conditions, so long as jitter or

stimulus variation is present—and having both is best of all. (Of

course, 2,000 trials is an unusually large number of trials to present

in 10 min, but the high trial density is exactly what makes this a

challenging case for overlap correction.) The supplementary infor-

mation contains a more detailed set of simulations, showing the

intercept rERPs for Experiments 2 and 3, as well as performance

for different data set sizes.

Response-Time Effect Revisited

Our nonlinear analysis of the go trials from the go/no-go data

above gave us reason to suspect that there might be two ERPs

occurring simultaneously: one time-locked to the stimulus, and a

second, overlapping ERP time-locked to the button press response.

Our overlap correction technique allows us to estimate the true

forms of these two ERPs separately, as shown in Figure 6. The two

curves in Figure 6a are chosen by the fitting process so as to make

their overlapped predictions (Figure 6b) match the actual trial-by-

trial data as closely as possible in the least squares sense—compare

Figure 6b to Figure 3a,b. As suspected, we find that the best expla-

nation involves a large response-locked positivity, which begins

somewhat before the button press is registered.

Note that in Figure 6a we use fairly long time windows, with all

curves returning to zero before the edge of the analysis window.

When not using overlap correction, it doesn’t much matter how

large an analysis window one uses; if it’s too short, then it merely

means that we can’t see all of the curve. But when fitting the over-

lap correction model, all ERPs are assumed to be exactly zero

everywhere outside of our analysis window. If this is not true, then

any effects outside this window will not be subject to overlap con-

trol, and their overlap may contaminate the parts of the waveform

that we do analyze. (This is another example of the principle that

leaving predictors out of one’s model may cause their effects to be

spuriously attributed to whichever predictors remain.) So when

using overlap correction to estimate waveforms, it’s important to

err on the side of using a long time window.

Validation

This approach to overlap correction treats the brain as a linear

time-invariant (LTI) system; that is, it assumes that the brain

response to seeing two items in quick succession is simply the sum

of the brain response to seeing each of those items in isolation,

with an appropriate temporal shift to account for time-locking.

Theory and simulations confirm that, if the LTI assumption is true,

then our method is capable of recovering the true underlying ERPs.

But does this assumption accurately describe neural processing?

There are two ways we can respond to this concern. One is to

perform various model-checking procedures, such as running the

Figure 5. First row: An intercept ERP from a simulated experiment with ISIs jittered randomly between 200 and 400 ms. Second row: A slope rERP

from a simulated experiment with fixed 300 ms ISI, and r 5 0.9 trial-to-trial correlation in the simulated stimulus property (measured in arbitrary units,

a.u.). Third row: Same as the second row, but with ISIs varying between 200 and 400 ms. Each plot shows estimates from five simulated runs of the

experiment, along with the true (r)ERP for comparison (dotted line).
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same experiment with both short and long ISIs, and checking

whether the estimated rERPs are the same in the two cases, or sim-

ply checking whether overlap correction improves our model’s fit.

Burns, Bigdely-Shamlo, Smith, Kreutz-Delgado, and Makeig

(2013) performed the latter experiment, analyzing EEG from a task

where images were presented at high-speed (12 per second), and

found that, when performing cross-validation, the overlap-

corrected rERPs explained a higher proportion of the variance in

the EEG signal than traditional ERPs from averaging, while using

the same number of parameters. This doesn’t tell us that the LTI

assumption is correct, but it suggests that, for this task, using this

form of overlap correction brings us closer to the truth than using

no overlap correction at all. In addition, studies in fMRI suggest

that the LTI assumption holds approximately for the hemodynamic

response (Boynton, Engel, Glover, & Heeger, 1996; Cohen, 1997;

Dale & Buckner, 1997), and to the extent that the hemodynamic

response reflects the same generators as EEG, this suggests that it

will be a useful approximation in this context as well.

In the long run, though, focusing on whether the brain violates

the LTI assumption is probably not the most productive

approach—it surely does. Instead, we should ask how the brain vio-

lates the LTI assumption. The overlap correction method proposed

here should be viewed as a method for determining precisely which

aspects of our data can be explained as arising from “mere over-

lap”—and thus which aspects of it cannot. If we find that overlap-

corrected rERPs estimated from short-ISI and long-ISI conditions

differ, then this would mean that we have successfully learned

something new: that in our task ISI has effects that go above and

beyond mere overlap. And the rERP approach is flexible enough to

let us integrate covariates like ISI or the identity of the previous

item (relevant for priming or habituation effects) directly into our

analysis of the event-locked waveform, while still correcting for

overlap with waveforms time-locked to other events.

In our go/no-go task, there must be something different about

the neural processing between slow trials and fast trials that makes

them slow or fast. So we expect there to be effects of RT that go

beyond the timing of the response—but previously, it was difficult

to look for these, since the massive positivity time-locked to the

response overwhelms any other effects. Using our model of overlap

correction, though, we can now subtract off the model predictions

from the actual data (producing residuals), and then look to see if

there are any patterns that remain unexplained. Figure 7a shows a

nonlinear rERP analysis of the residuals from the overlap-corrected

rERPs in Figure 6. Two things might strike us here.

First, all the amplitudes are much smaller than before; the over-

lap correction model has successfully accounted for most of the

systematic variability in this data (or at least, that which can be

captured by a nonlinear rERP). But there are some intriguing regu-

larities in what’s left: at around 200 ms, we see a roughly linear

effect where slow trials are more positive than fast trials (red above

blue); at around 300 ms, this switches to the opposite pattern (blue

above red). A somewhat crude way to visualize this in more famil-

iar terms is to subtract off only the response-locked rERP as esti-

mated by our model, and then compute ERP estimates for

dichotomized RT bins (see Figure 7b). This graph is directly com-

parable to Figure 1.

Figure 1 showed a RT-related latency shift in the positivity

peaking near 350 ms, and sustained differences between our four

RT bins extending to 800 ms and beyond. Figure 7b shows that

both of these apparent effects can be accounted for by mere overlap

with a response-locked positivity. But even after correcting for the

response-locked ERP, we see residual amplitude differences

between fast and slow trials in the 150–250 ms and 250–400 ms

time windows, which call for further examination. In addition, we

can now see that the no-go trials in fact deviate substantially from

the go trials, especially in the 400–700 ms range; previously, they

appeared similar, but this turns out to have been an artifact of the

response-locked positivity in the go trials coincidentally matching

a stimulus-locked positivity in the no-go trials.

But Figure 7b is (in statistical terms) a somewhat naughty

approach, because the response-locked rERP in Figure 6a was cal-

culated on the assumption that the stimulus-locked ERP did not
vary with RT; if the stimulus-locked rERP had been allowed to

vary, then the response-locked rERP might have come out differ-

ently. We’re effectively assuming that all the unexplained variance

in our original overlap-corrected model can be attributed to the

stimulus-locked ERP, rather than the response. A more theoreti-

cally sound method of doing this analysis would be to allow the

stimulus-locked rERP to vary in a nonlinear fashion (e.g., by using

a step-function basis), and estimating it simultaneously with the

a b

Figure 6. a: rERP estimates time-locked separately to stimulus presentation and button-press response, estimated with overlap correction to go trials

from Urbach and Kutas (2008). b: The predictions made by this model. Compare to Figures 3a,b.
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response-locked rERP. This is perfectly doable with our method,

but it turns out that, if we try on these data, the stimulus- and

response-locked rERPs are too highly collinear to produce useful

estimates. This is unsurprising, since, as Figure 3a shows, the

stimulus-locked step-function basis is already able to capture a sig-

nificant portion of the response-locked effect. One way to deal

with this is to first fit one model—allowing it to capture all the var-

iance that it can, resolving all ambiguities in its favor—and then

examine what’s left, as we did in Figure 7a (Kryuchkova et al.,

2012; Laszlo & Federmeier, 2014). Another would be to gather

more data. And a third is to fit a model that is flexible enough to

capture the effects we care about, but not so flexible as to create

massive collinearity problems. (When interpreting our results, how-

ever, we must keep in mind that no data analysis alone, no matter

how clever, can rule out the interpretation where the entire pattern

we observe is due to an extremely complicated nonlinear stimulus-

locked ERP—this is the fundamental problem that the collinearity

here is warning us about.)

Fortunately, as shown in Figure 2c, stimulus-locked linear

(slope) rERPs are unable to capture the response-locked effect,

which means that we can safely use them in our overlap analysis to

analyze the residual effects of RT without creating too much colli-

nearity. Further support for this strategy comes from our discussion

of Figure 7a, in which the major unmodeled patterns appear to be

roughly linear. Therefore, we fit a more sophisticated model, in

which both the stimulus- and response-locked ERPs are allowed to

vary linearly with RT (Figure 7c–d.9 ) Consistent with the cruder

analysis in Figure 7b, we find that, in the stimulus-locked rERPs,

slower responses are more negative than faster responses at around

200 ms, but from 300–400 ms the pattern reverses. Turning to the

response-locked rERPs, we also now see that faster responses seem

to be associated with an overall greater positivity than slower ones.

In a real study, we would want to use statistical tests to confirm

that these patterns were real, or we might continue by examining

the residuals from this more sophisticated model for more unmod-

eled patterns (Figure 7d). Our goal here is not to provide a defini-

tive analysis of these go/no-go data, but to illustrate how these

models can be used and interpreted.

Practical Considerations

Having completed our discussion of the core rERP methods, we

now turn to a number of practical issues that arise when using them

as part of a full analysis pipeline.

a

c d

b

Figure 7. a: A nonlinear rERP (cubic spline with 4 df) analysis of the residual amplitudes left by subtracting the overlap model’s predictions (Fig-

ure 6b) from the single-trial EEG data. b: ERPs formed by subtracting out Figure 6a’s response-locked rERP (but not the stimulus-locked rERP) from

the single-trial data, and then averaging across four RT bins. Compare to Figure 1. c: A more sophisticated overlap-corrected rERP model, in which

both stimulus- and response-locked ERPs are assumed to vary linearly with RT. Because the RT predictor was centered, intercept rERPs here estimate

ERP activity on trials with the mean RT (460 ms), while RT slope rERPs estimate how this changes as the RT varies above or below this. Tick marks

on RT slope graphs indicate 1 lV change in scalp amplitude per 100 ms change in RT. d: Nonlinear rERP analysis of residual amplitudes from this

more sophisticated model. Notice that images (a) and (d) share a different color bar from that used in previous figures.

9. Notice that to compute these rERPs, we have combined one inter-
cept 1 slope rERP analysis for the stimulus-locked events with a second,
separate intercept 1 slope rERP analysis for the response-locked events.
This is accomplished by writing down the standard predictors for each
of these two models, and then using the zero trick yet again to combine
the two into a single model, which we fit using overlap correction as
described above.
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Baselining and Temporal Filtering

Baselining corrects for drift in the EEG signal by subtracting off

the average potential measured over some prestimulus baseline

period; temporal filtering smoothes away high-frequency noise that

may be known to be irrelevant to some analysis of interest. Both

are commonly used in ERP research. When working with tradi-

tional ERPs, these operations can be applied either to the individual

epochs before averaging, or to the estimated ERP waveforms after

averaging. It turns out that with averaging-based ERPs the results

come out identical whichever order you use (Luck, 2005). There-

fore, it’s common to do averaging first—it’s faster to baseline or

filter an averaged waveform than many individual epochs, and,

because filtering in particular has the potential to create harmful

distortions, saving it for the end is useful because it allows one to

try multiple filter settings, and apply it only where necessary (e.g.,

for display, but not statistical analysis; Luck, 2005).

Remarkably, in this respect, least squares rERPs estimated with-

out overlap correction turn out to act just like those derived by

averaging: you can baseline or filter either your original epochs or

your rERP waveforms, and you get the same results either way (see

supporting information for proof). Therefore, the same recommen-

dations apply.

When using overlap correction, the equivalence theorem does

not hold, but there still doesn’t seem to be any reason to apply

baselining or filtering first. (And since the continuous-time regres-

sion model replaces epoching, it’s not clear how baselining before

regressing would even work.) The simplest and safest approach still

seems to be to apply these to estimated rERP waveforms only.

Baselining makes just as much sense for slope and nonlinear

rERPs as it does for categorical rERPs; these estimates are just as

likely to be thrown off by outliers caused by low-frequency drift.

Spatial Filtering

A number of useful transformations on EEG data can be interpreted

as the application of linear spatial filters: spatial principal compo-

nent analysis (PCA) or independent component analysis (ICA)

decomposition, rereferencing, the Laplacian transformation, some

forms of blink correction, etc. Similar to baselining and filtering,

these have an identical effect whether they are applied to EEG data

before regressing or afterwards to derived rERP waveforms. Unlike

baselining and temporal filtering, this is true regardless of whether

you use overlap correction. (See supporting information.)

Significance Testing

After estimating an ERP waveform, we must determine whether

the patterns we think we see are real, or whether we’re just looking

at noise and fooling ourselves. Thus, we need ways to perform sta-

tistical significance testing.

Regression models come with a rich set of tools for testing

hypotheses about b coefficients and combinations of b coefficients,

and in rERP analysis, all our estimated and predicted waveforms

are b coefficients and combinations of b coefficients. In principle,

therefore, we should be able to use our rERP model to directly test

null hypotheses like “at least one point within this latency window

is nonzero.” But, the most straightforward way of applying these

statistical tests to rERP analyses turns out not to work. Least

squares regression itself is an unbiased technique regardless of how

our noise is distributed. But the textbook statistical tests for regres-

sion models require much stronger assumptions, including in par-

ticular the assumption that noise is uncorrelated across data points;

that is, they require that knowing the amplitude of the EEG back-

ground activity at time t tells you nothing about its amplitude at

time t 1 1. This is very far from true, and thus more work will be

needed before we can use rERP models to directly derive trustwor-

thy parametric p values for activity spread over multiple time

points (Smith, 2011). Another natural extension to the approach

described here would be to estimate rERP waveforms using mixed

effects regression to handle crossed random effects of both items

and participants (Baayen, Davidson, & Bates, 2008; Clark, 1973),

but this runs into a similar problem: these methods require distribu-

tional assumptions about how waveforms vary across items and

participants, and understanding what assumptions are appropriate

will require further investigation.

In the meantime, the traditional methods for testing significance

of features in ERP waveforms remain just as valid for rERPs. Spe-

cifically, we can estimate per-participant rERPs, extract some fea-

ture from each waveform—such as average amplitude over a

window, or peak latency—and then submit it to an analysis of var-

iance (ANOVA) across participants. The waveforms used can be

individual b waveforms, or combined prediction waveforms. This

can handle arbitrary rERP designs (including those with overlap

correction) and arbitrary features. It cannot account for crossed ran-

dom effects, but neither can current ERP analysis methods.

In the special case where one wants to test mean amplitude over

a latency window in an rERP design and is not using overlap cor-

rection, then there are three approaches that might seem

reasonable:

1. As above, calculate rERP waveforms for each participant and

electrode, baseline them, compute mean rERP amplitude over

the window, then enter these into an ANOVA.

2. On a trial-by-trial basis within each participant and electrode,

baseline each trial, calculate mean amplitude over the window,

then perform a repeated measures regression across participants

and electrodes (Dambacher, Kliegl, Hofmann, & Jacobs, 2006;

Lorch & Myers, 1990).

3. On a trial-by-trial basis within each participant and electrode,

baseline each trial, calculate mean amplitude over the window,

then submit these to a mixed effects regression (Amsel, 2011;

Frank, Otten, Galli, & Vigliocco, 2013).

Options 1 and 2 turn out to be mathematically identical (see sup-

porting information). Options 2 and 3 are conceptually very simi-

lar: repeated measures regression/ANCOVA (analysis of

covariance) and mixed effects models are two different statistical

techniques for answering the same questions, with the latter being

more modern, powerful, and prone to complications (Barr, Levy,

Scheepers, & Tily, 2013). And, in this case, using only single data

points derived from each baselined epoch minimizes the problems

described above involving waveform covariation and correlations

in the background noise. Thus, if handling crossed random effects

is important and appropriate sphericity correction is available, there

may be cases where it makes sense to use least squares to estimate

rERPs for plotting but then use Option 3 for testing. In all other

cases, the best bet for the moment is to stick to the traditional

Option 1.

Artifact Rejection

A common problem in EEG analysis is the presence of artifacts

such as blinks or muscle activity, which create large bursts of noise

that may contaminate ERP/rERP estimates. Thus, it’s common to
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use some sort of method to identify and discard data containing

such artifacts. When not using overlap correction, rERP analysis

takes epoched data as input, and we can apply artifact rejection to

these epochs just as we do with traditional averaging. When using

overlap correction, things are more complicated.

Consider the situation depicted in Figure 8, where one epoch

contains an artifact and also overlaps with other artifact-free

epochs. The usual way of handling this in traditional ERP analysis

would be to drop event 2, while keeping events 1 and 3. But we

can’t do that here; if we analyzed this data as if event 2 had not

occurred, then it would cause event 2’s effects in the marked

regions to contaminate our analysis of events 1 and 3. (This is

another example of how dropping a control variable creates incon-

sistent estimates.) Traditionally, rejecting an event and rejecting its

data are the same thing. Here, the mapping between events and

data is not so simple, and artifact rejection must be applied to data,

not to events.

One option is to reject just the portion of the data where the arti-

fact actually occurs (the red box in Figure 8), and continue to ana-

lyze the remainder of event 2’s epoch, along with all of the epochs

for events 1 and 3. Technically, this is easy to do; when using the

continuous-time regression model for overlap correction, every

data point enters as its own row in the regression, so we can reject

an arbitrary subset of data points by simply dropping them from

the regression. However, some might find it bothersome to reject

part of an epoch while keeping the rest, and it may cause difficul-

ties for baseline correction if different portions of our waveform

are estimated from different subsets of our data and thus exposed

to different levels of drift. If we require every epoch to either be in

or out as a whole, then we must reject all of event 2’s epoch, and

all of the epochs that overlap it, and all of the epochs that overlap

those, and so on. In some cases, like our go/no-go data, this is not

bothersome, since we never have more than two events overlap-

ping. In others, for example, a sentence-reading study where events

are successive words presented in rapid serial visual presentation

(RSVP), it would be unfortunate to have to throw out the entirety

of every sentence that contains a blink anywhere within it, and we

might prefer to reject partial epochs instead.

When working with data sets or software packages not origi-

nally intended for use with overlap correction, we may be able to

determine which epochs contain artifacts, but not where within the

epoch they occur. In this case, the best available option is probably

to treat the whole epoch as if it were artifactual, and reject all the

data it contains from all the epochs that it overlaps.

In general, these issues mean that the use of continuous regres-

sion will benefit from the use of artifact correction techniques such

as blink correction (Joyce, Gorodnitsky, & Kutas, 2004) or ICA

(Jung et al., 2000), the adoption of regression methods that are

more robust to outliers (Maronna, Martin, & Yohai, 2006) and thus

depend less on explicit artifact rejection, and the development of

techniques for precisely detecting the location and extent of arti-

facts in continuous, nonepoched data.

Conclusion

Smith & Kutas (2015) introduced the fundamentals of the rERP

framework, examined its relation to classic ERP averaging, and

reviewed the theoretical results that guide us in considering trade-

offs between different designs. Here, we’ve built on this founda-

tion, and found that, in addition to handling classic ERP designs,

the rERP framework straightforwardly generalizes to even complex

analyses involving nonlinear effects and overlapping brain

responses to temporally adjacent events. It also—with some minor

adjustments—fits naturally into a traditional ERP analysis pipeline.

In the process, we’ve found that the concepts introduced to under-

stand trade-offs in simple linear designs—like the effects of partial

and perfect collinearity—are also sufficient to understand even

complicated situations—like the interplay between overlap correc-

tion and nonlinear effects in a combined analysis. rERP analysis

unifies classic ERPs, difference ERPs, linear slope ERPs, dichoto-

mization, ERP images, single-trial analysis of mean window ampli-

tudes, and overlap correction into a single flexible and

conceptually coherent system.

A list of free software packages implementing these methods is

available at http://vorpus.org/rERP.
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Supplementary information for Regression-based
estimation of ERP waveforms: II. Non-linear effects,

overlap correction, and practical considerations

Nathaniel J. Smith and Marta Kutas

S1 Detailed simulations of overlap correction method
The main text describes three simulated experiments used to test the overlap correction technique.
In the first (Intercept-only, with jitter), a series of identical stimuli are presented, with ISI jittered
between 200 and 400 ms in 16.7 ms intervals. In the second (Intercept + slope, no jitter), a fixed
300 ms ISI is used, and the ERP response to the stimuli varies according to a linear model:

Stimulus ERPn = Intercept rERP+Stimulus propertyn ×Slope rERP

The stimulus properties are sampled from an AR(1) model:

Stimulus propertyn = 0.9×Stimulus propertyn−1 +Normal(µ = 0,σ = 1)

The resulting stimulus properties have a mean value of zero, and strong trial-to-trial correlations;
the correlation between trial n and trial n+ k is r = 0.9k. The third experiment (Intercept + slope,
with jitter), combines these manipulations; it uses the slope rERP model of experiment 2 and the
jittered stimulus presentation schedule of experiment 1.

Fig. S1-S3 show the results of analyzing these simulated experiments on varying amounts of
stimuli, both with and without overlap correction. Table S1 reports the root mean squared error
(RMSE) between the estimated rERP and the true rERP for each of these conditions. To visualize
sampling noise, the figures show results from five randomly selected simulation runs. RMSE
calculations are based on estimates from 10,000 simulation runs. All waveforms were baselined
before plotting or RMSE calculation.

In the Intercept + slope, no jitter condition (Fig. S2) we see that, as discussed in the main text,
the intercept term cannot be reliably estimated with overlap correction enabled; we get extremely
noisy results. But these waveforms are not entirely arbitrary. What’s happening is, essentially, that
the model knows very well what the steady-state response ought to look like, because it has plenty
of data showing this. Then out of all the waveforms that, when overlapped, produce the same
steady-state response, it chooses the ones which best match the first and last trials in our simulated
experiment, since these are the only trials that are observed with only partial overlap. So while the
model can identify the steady-state response, when it comes to uniquely picking out which of the
waveforms that correspond to this steady-state response was actually present, we effectively have
an N of ∼1. In the companion article, we discussed how removing confounded predictors from

1



Data

Trials Time (min) No overlap correction With overlap correction

100 0.5

500 2.5

2000 10

Truth
5 µV

   400 ms
5 µV

   400 ms

Figure S1: Intercept-only model, with jitter: Comparison between estimated waveforms from five
simulated runs, and true waveforms.

an analysis may increase your power, but it does this by increasing your power to detect spurious
effects. This is an example: when not using overlap corection, the intercept rERP is stable and
reliably wrong. When using overlap correction (and thus correcting for the confounding effects
of temporally adjacent events), the rERP estimate is highly variable, thus correctly and reliably
indicating that the true underlying rERP cannot be estimated from this data.

Within this simulation, the intercept and slope rERPs are estimated simultaneously together
within each model fit. Notice how these fits produce correct estimates of the slope rERPs, even
while failing to estimate the intercept rERP. This gives an extreme example of how collinearity
only affects estimates for the collinear predictors, and does not ‘infect’ other predictors within the
same model.

Finally, notice that while our technique can use stimulus variability to successfully estimate the
slope rERP even with a fixed ISI (Fig. S2), it does even better when it has both stimulus variability
and jitter together (Fig. S3; see also Table S1, where in the right column, the with jitter values are
systematically lower than no jitter values). This demonstrates how the least-squares fitting process
automatically integrates all data available.

S2 Derivations for baselining, filtering, windowing
Here we give the mathematical derivations which show that many standard operations — including
baselining, temporal and spatial filtering, and taking averages over latency windows — can be
performed either on raw EEG before using least-squares regression to estimate rERPs, or else

2
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Table S1
Root mean squared error between estimated rERP and true rERP

No overlap correction With overlap correction

Trials Time (min) Intercept rERP Slope rERP Intercept rERP Slope rERP

Intercept-only model, with jitter (Fig. S1)

100 0.5 5.22 5.34
500 2.5 5.13 1.79
2000 10 5.09 0.78

Intercept + slope model, no jitter (Fig. S2)

100 0.5 5.87 2.35 23.20 2.79
500 2.5 5.76 2.19 21.31 1.23
2000 10 5.73 2.18 25.80 0.79

Intercept + slope model, with jitter (Fig. S3)

100 0.5 5.25 2.15 5.71 1.83
500 2.5 5.14 1.99 1.80 0.70
2000 10 5.09 1.99 0.81 0.43
Note. Darker shading corresponds to larger error values.

on the resulting rERPs themselves, and the exact same result will be obtained either way. This
theorem underlies the discussion of baselining and filtering in the main text. It also justifies the
equivalence between ‘option 1’ and ‘option 2’ in the discussion of statistical significance testing,
because repeated-measures regression works by first running a standard regression model across
mean window amplitudes, and then submitting these to an ANOVA.

This is most clear if we switch to matrix notation for writing our regression model. Instead of

yi = β1x1i +β2x2i + · · ·+noisei

we can write the mathematically identical expression

yyy = Xβββ +noise. (∗)

Here we use the convention that column vectors are written in bold, while matrices are written in
uppercase; the vectors are

yyy =< y1, . . . ,yn >
T

βββ =< β1, . . . ,βn >
T

noise =< noise1, . . . ,noisen >
T

and X is the design matrix, i.e., a matrix formed by putting the values of x1i into the first column,
x2i into the second, and so on:

Xi j = x ji.

5



The least-squares solution to equation (∗) can now be expressed using the so-called ‘normal equa-
tions’:

β̂ββ = (XT X)−1XT yyy.

(Here the hat on the β̂ββ is to remind us that this value is our estimate of βββ , and probably has a
different value than the actual βββ that generated our data.)

One useful thing about this notation is that if we are performing m regressions with the same
predictors but different data, then we can combine these into a single formula. Each regression has
a different column vector of data yyy. If we combine these to be the columns of a single large matrix
Y , then we can write

Y = XB+Noise.

where B (the uppercase form of β ) and Noise are now matrices. There’s nothing particularly deep
about combining the regression models in this way; it’s basically just a notational trick, where
we use the standard rules of linear algebra to express that we want to fit m regression models in
parallel. And here, too, we can write a single formula for the least-squares solution to all of these
regressions at once:

B̂ = (XT X)−1XTY.

Again, if you work through the matrix multiplications, this is just saying that the single-regression
equation above should be applied to each column of Y separately.

But this final expression is very useful when it comes to thinking about how the rERP is affected
by these operations. Recall that yyy =< y1, . . . ,yn >

T are the values of the EEG at a single electrode
and latency but on different trials. Within a single electrode we have one yyy vector for each latency,
and we can collect these together to make a single Y matrix for that electrode. If we order these
column vectors by latency then — this is critical — each row of Y will contain the raw EEG data
from a single epoch.

Baselining, temporal filtering, and taking the average over a window all have a critical attribute
in common: they transform each epoch of data by applying a linear transformation to that epoch
alone. So they take our matrix Y , and replace each row by a linear transformation of that row. That
means that they can be written as a right-multiplication of our Y matrix by another matrix. For
averaging over a window containing k points, this matrix would have a single column, with entries
< 0, . . . ,0,1/k, . . . ,1/k,0, . . . ,0 >T . We can construct the matrix that performs baseline correction
by starting with a matrix that has n columns, each of which computes the average of the baseline
window, and subtracting it off from an n×n identity matrix. And filtering, which operates by re-
placing each point in an epoch with some linear combination of the points in that epoch, would use
a matrix in which each column contained a shifted copy of the filter’s impulse response function.
In any case, let’s call the matrix which performs the desired operation F .

If we first perform this transformation on the raw data and then enter these transformed values
— Y F , in matrix notation — into a regression, we get a matrix of new β values, which we denote
B̂F :

B̂F = (XT X)−1XT (Y F).

6



Alternatively, we could first compute the matrix of rERP values, B̂, and then apply our transforma-
tion to these β values directly, which in matrix notation would be written B̂F .

So the claim is that it doesn’t matter whether we average/filter our raw data, or instead aver-
age/filter our resulting rERP; that is, we claim that B̂F = B̂F . But this is now easy to see, because
matrix multiplication is associative, which allows us to rearrange parentheses:

B̂F = (XT X)−1XT (Y F) =
(
(XT X)−1XTY

)
F = B̂F.

If we are using the continuous-time regression model necessary for overlap correction (and
actually using it in a non-trivial way, i.e., not just doing an analysis that could be equally well
done by epoched regression), then the above proof does not go through, because now all the time
points from each epoch go into a single column of Y . However, even in this case, we still regress
each electrode separately. Therefore, the above proof still applies to spatial linear transformations,
which can be treated as right multiplication of our Y matrix of data, where each column in Y has
data from a single electrode.
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